26 research outputs found

    Abnormal Speech Motor Control in Individuals with 16p11.2 Deletions.

    Get PDF
    Speech and motor deficits are highly prevalent (>70%) in individuals with the 600 kb BP4-BP5 16p11.2 deletion; however, the mechanisms that drive these deficits are unclear, limiting our ability to target interventions and advance treatment. This study examined fundamental aspects of speech motor control in participants with the 16p11.2 deletion. To assess capacity for control of voice, we examined how accurately and quickly subjects changed the pitch of their voice within a trial to correct for a transient perturbation of the pitch of their auditory feedback. When compared to controls, 16p11.2 deletion carriers show an over-exaggerated pitch compensation response to unpredictable mid-vocalization pitch perturbations. We also examined sensorimotor adaptation of speech by assessing how subjects learned to adapt their sustained productions of formants (speech spectral peak frequencies important for vowel identity), in response to consistent changes in their auditory feedback during vowel production. Deletion carriers show reduced sensorimotor adaptation to sustained vowel identity changes in auditory feedback. These results together suggest that 16p11.2 deletion carriers have fundamental impairments in the basic mechanisms of speech motor control and these impairments may partially explain the deficits in speech and language in these individuals

    Associations between rapid auditory processing of speech sounds and specific verbal communication skills in autism

    Get PDF
    IntroductionThe ability to rapidly process speech sounds is integral not only for processing other’s speech, but also for auditory processing of one’s own speech, which allows for maintenance of speech accuracy. Deficits in rapid auditory processing have been demonstrated in autistic individuals, particularly those with language impairment. We examined rapid auditory processing for speech sounds in relation to performance on a battery of verbal communication measures to determine which aspects of verbal communication were associated with cortical auditory processing in a sample of individuals with autism.MethodsParticipants were 57 children and adolescents (40 male and 17 female) ages 5–18 who were diagnosed with an Autism Spectrum Disorder (ASD). Rapid auditory processing of speech sounds was measured via a magnetoencephalographic (MEG) index of the quality of the auditory evoked response to the second of two differing speech sounds (“Ga” / “Da”) presented in rapid succession. Verbal communication abilities were assessed on standardized clinical measures of overall expressive and receptive language, vocabulary, articulation, and phonological processing. Associations between cortical measures of left- and right-hemisphere rapid auditory processing and verbal communication measures were examined.ResultsRapid auditory processing of speech sounds was significantly associated with speech articulation bilaterally (r = 0.463, p = 0.001 for left hemisphere and r = 0.328, p = 0.020 for right hemisphere). In addition, rapid auditory processing in the left hemisphere was significantly associated with overall expressive language abilities (r = 0.354, p = 0.013); expressive (r = 0.384, p = 0.005) vocabulary; and phonological memory (r = 0.325, p = 0.024). Phonological memory was found to mediate the relationship between rapid cortical processing and receptive language.DiscussionThese results demonstrate that impaired rapid auditory processing for speech sounds is associated with dysfunction in verbal communication in ASD. The data also indicate that intact rapid auditory processing may be necessary for even basic communication skills that support speech production, such as phonological memory and articulatory control

    Abnormal speech motor control in individuals with 16p11.2 deletions

    Get PDF
    Speech and motor deficits are highly prevalent (\u3e70%) in individuals with the 600 kb BP4-BP5 16p11.2 deletion; however, the mechanisms that drive these deficits are unclear, limiting our ability to target interventions and advance treatment. This study examined fundamental aspects of speech motor control in participants with the 16p11.2 deletion. To assess capacity for control of voice, we examined how accurately and quickly subjects changed the pitch of their voice within a trial to correct for a transient perturbation of the pitch of their auditory feedback. When compared to controls, 16p11.2 deletion carriers show an over-exaggerated pitch compensation response to unpredictable mid-vocalization pitch perturbations. We also examined sensorimotor adaptation of speech by assessing how subjects learned to adapt their sustained productions of formants (speech spectral peak frequencies important for vowel identity), in response to consistent changes in their auditory feedback during vowel production. Deletion carriers show reduced sensorimotor adaptation to sustained vowel identity changes in auditory feedback. These results together suggest that 16p11.2 deletion carriers have fundamental impairments in the basic mechanisms of speech motor control and these impairments may partially explain the deficits in speech and language in these individuals

    White Matter Microstructure Associations of Cognitive and Visuomotor Control in Children: A Sensory Processing Perspective

    Get PDF
    Objective: Recent evidence suggests that co-occurring deficits in cognitive control and visuomotor control are common to many neurodevelopmental disorders. Specifically, children with sensory processing dysfunction (SPD), a condition characterized by sensory hyper/hypo-sensitivity, show varying degrees of overlapping attention and visuomotor challenges. In this study, we assess associations between cognitive and visuomotor control abilities among children with and without SPD. In this same context, we also examined the common and unique diffusion tensor imaging (DTI) tracts that may support the overlap of cognitive control and visuomotor control.Method: We collected cognitive control and visuomotor control behavioral measures as well as DTI data in 37 children with SPD and 25 typically developing controls (TDCs). We constructed regressions to assess for associations between behavioral performance and mean fractional anisotropy (FA) in selected regions of interest (ROIs).Results: We observed an association between behavioral performance on cognitive control and visuomotor control. Further, our findings indicated that FA in the anterior limb of the internal capsule (ALIC), the anterior thalamic radiation (ATR), and the superior longitudinal fasciculus (SLF) are associated with both cognitive control and visuomotor control, while FA in the superior corona radiata (SCR) uniquely correlate with cognitive control performance and FA in the posterior limb of the internal capsule (PLIC) and the cerebral peduncle (CP) tract uniquely correlate with visuomotor control performance.Conclusions: These findings suggest that children who demonstrate lower cognitive control are also more likely to demonstrate lower visuomotor control, and vice-versa, regardless of clinical cohort assignment. The overlapping neural tracts, which correlate with both cognitive and visuomotor control suggest a possible common neural mechanism supporting both control-based processes

    AUDITORY PROCESSING AND THE EXTRACTION OF SOCIAL EMOTIONAL CUES IN AUTISM

    No full text
    There is increasing evidence that there are deficits in vocal affect recognition abilities in some individuals diagnosed with Autism Spectrum Disorders (ASDs) and that sensory deficits are also common in these individuals. Little research, however, has focused on the relation between atypical auditory processing and vocal affect recognition abilities. The aim of this study was to examine if there was an association between cortical auditory processing and vocal affect recognition ability, and, in turn, to determine if vocal affect recognition ability was related to parent report of social and leadership skills. First, peripheral auditory processing was examined in a sample of 28 5-18 yearold (mean = 11.48) children and adolescents with an ASD. Vocal affect recognition was assessed by the paralanguage subtests of the Diagnostic Analysis of Nonverbal Accuracy (DANVA), and magnetoencephalography (MEG) was used to evaluate cortical electrophysiological processing in relation to auditory stimuli. Parent-report was used to assess social skills and leadership with these subtests on the Behavior Assessment Scale for Children-2. Correlational analyses indicated that there were no significant relations between peripheral auditory processing and DANVA scores. Results of hierarchical regression analyses indicated that, after controlling for age, language ability, and IQ, the measures of cortical auditory processing contributed a significant additional 19% of the variance in DANVA-2 scores. Specifically, left hemisphere response latency and right hemisphere rapid auditory processing were related to vocal affect recognition. They also indicated that DANVA-2 scores contributed a significant additional 30% of the variance in parent-rated social skills after controlling for language ability and IQ. However, DANVA-2 scores did not contribute significantly to leadership skills. xi This was the first study to use magnetoencephalography (MEG) to assess auditory evoked fields in relation to vocal affect recognition and to show that there is an association between specific features of cortical auditory processing and vocal affect recognition. These results suggest that the ability to respond to and efficiently process rapidly presented auditory information may be important in extracting affective cues from speech, and for individuals on the autism spectrum, impairment in these abilities may contribute to difficulty in vocal affect recognition.PH.D in Psychology, July 201
    corecore