839 research outputs found

    Prototype Packages for Managing and Animating Longitudinal Network Data: dynamicnetwork and rSoNIA

    Get PDF
    Work with longitudinal network survey data and the dynamic network outputs of the statnet ERGMs has demonstrated the need for consistent frameworks and data structures for expressing, storing, and manipulating information about networks that change in time. Motivated by our requirements for exchanging data among researchers and various analysis and visualization processes, we have created an R package dynamicnetwork that builds upon previous work in the network, statnet and sna packages and provides a limited functional implementation. This paper discusses design issues and considerations, describes classes and forms of dynamic data, and works through several examples to demonstrate the utility of the package. The functionality of the rSoNIA package that uses dynamicnetwork to exchange data with the Social Network Image Animator (SoNIA) software to create animated movies of changing networks from within R is also demonstrated.

    β2-adrenergic agonists modulate TNF-α induced astrocytic inflammatory gene expression and brain inflammatory cell populations

    Get PDF
    Background: The NF-kappa B signaling pathway orchestrates many of the intricate aspects of neuroinflammation. Astrocytic beta(2)-adrenergic receptors have emerged as potential regulators in central nervous system inflammation and are potential targets for pharmacological modulation. The aim of this study was to elucidate the crosstalk between astrocytic beta(2)-adrenergic receptors and the TNF-alpha induced inflammatory gene program. Methods: Proinflammatory conditions were generated by the administration of TNF-alpha. Genes that are susceptible to astrocytic crosstalk between beta(2)-adrenergic receptors (stimulated by clenbuterol) and TNF-alpha were identified by qPCR-macroarray-based gene expression analysis in a human 1321 N1 astrocytoma cell line. Transcriptional patterns of the identified genes in vitro were validated by RT-PCR on the 1321 N1 cell line as well as on primary rat astrocytes. In vivo expression patterns were examined by intracerebroventricular administration of clenbuterol and/or TNF-alpha in rats. To examine the impact on the inflammatory cell content of the brain we performed extensive FACS analysis of rat brain immune cells after intracerebroventricular clenbuterol and/or TNF-alpha administration. Results: Parallel transcriptional patterns in vivo and in vitro confirmed the relevance of astrocytic beta(2)-adrenergic receptors as modulators of brain inflammatory responses. Importantly, we observed pronounced effects of beta(2)-adrenergic receptor agonists and TNF-alpha on IL-6, CXCL2, CXCL3, VCAM1, and ICAM1 expression, suggesting a role in inflammatory brain cell homeostasis. Extensive FACS-analysis of inflammatory cell content in the brain demonstrated that clenbuterol/TNF-alpha co-administration skewed the T cell population towards a double negative phenotype and induced a shift in the myeloid brain cell population towards a neutrophilic predominance. Conclusions: Our results show that astrocytic beta(2)-adrenergic receptors are potent regulators of astrocytic TNF-alpha-activated genes in vitro and in vivo, and ultimately modulate the molecular network involved in the homeostasis of inflammatory cells in the central nervous system. Astrocytic beta(2)-adrenergic receptors and their downstream signaling pathway may serve as potential targets to modulate neuroinflammatory responses

    Parallel functional and stoichiometric trait shifts in South American and African forest communities with elevation

    Get PDF
    The Amazon and Congo basins are the two largest continuous blocks of tropical forest with a central role for global biogeochemical cycles and ecology. However, both biomes differ in structure and species richness and composition. Understanding future directions of the response of both biomes to environmental change is paramount. We used one elevational gradient on both continents to investigate functional and stoichiometric trait shifts of tropical forest in South America and Africa. We measured community-weighted functional canopy traits and canopy and topsoil delta N-15 signatures. We found that the functional forest composition response along both transects was parallel, with a shift towards more nitrogen-conservative species at higher elevations. Moreover, canopy and topsoil delta N-15 signals decreased with increasing altitude, suggesting a more conservative N cycle at higher elevations. This cross-continental study provides empirical indications that both South American and African tropical forest show a parallel response with altitude, driven by nitrogen availability along the elevational gradients, which in turn induces a shift in the functional forest composition. More standardized research, and more research on other elevational gradients is needed to confirm our observations

    Polarimetric distance-dependent models for large hall scenarios

    Get PDF
    A comprehensive polarimetric distance-dependent model of the power delay profile (PDP) and path gain is proposed. The model includes both specular multipath components (SMCs) and dense multipath components (DMC), the latter being modeled with an exponential and power law. The parameters of the model were estimated from polarimetric measurements of a large hall radio channel under line-of-sight (LOS) conditions at 1.3 GHz with a dedicated procedure. The validity and robustness of the proposed approach are provided by the good agreement between the polarimetric data and models for the investigated transmitter-receiver distance range. Furthermore, the description of the radio channel with path loss models is discussed for cases where the DMC is included, and a two-step method to compute the path loss characteristics directly from the measured data is developed. The results of this contribution highlight the fact that a complete polarimetric description of all propagation mechanisms and related path loss models is desired to design faithful polarimetric radio channel models

    A review of COFRADIC techniques targeting protein N-terminal acetylation

    Get PDF
    Acetylation of nascent protein Nalpha-termini is a common modification among archae and eukaryotes and can influence the structure and function of target proteins. This modification has been studied on an individual protein or (synthetic) peptide level or on a proteome scale using two-dimensional polyacrylamide gel electrophoresis. We recently developed mass spectrometry driven proteome analytical approaches specifically targeting the amino (N) terminus of proteins based on the concept of diagonal reverse-phase chromatography. We here review how this so-called combined fractional diagonal chromatography (COFRADIC) technique can be used in combination with differential mass-tagging strategies as to both qualitatively and quantitatively assess protein Nalpha-acetylation in whole proteomes

    Part II - De Profundis: Deep Personal Grief Precipitates Musical Masterpieces

    Get PDF
    Editor\u27s Note: This is Part II of Dr. DeMol\u27s article. See the March 2022 issue for Part I
    corecore