241 research outputs found

    A New Measurement of the π0\pi^0 Radiative Decay Width

    Full text link
    High precision measurements of the differential cross sections for π0\pi^0 photoproduction at forward angles for two nuclei, 12^{12}C and 208^{208}Pb, have been performed for incident photon energies of 4.9 - 5.5 GeV to extract the π0γγ{\pi^0 \to \gamma\gamma} decay width. The experiment was done at Jefferson Lab using the Hall B photon tagger and a high-resolution multichannel calorimeter. The π0γγ{\pi^0 \to \gamma\gamma} decay width was extracted by fitting the measured cross sections using recently updated theoretical models for the process. The resulting value for the decay width is Γ(π0γγ)=7.82±0.14 (stat.)±0.17 (syst.) eV\Gamma{(\pi^0 \to \gamma\gamma)} = 7.82 \pm 0.14 ~({\rm stat.}) \pm 0.17 ~({\rm syst.}) ~{\rm eV}. With the 2.8% total uncertainty, this result is a factor of 2.5 more precise than the current PDG average of this fundamental quantity and it is consistent with current theoretical predictions.Comment: 4 pages, 5 figure

    The e p -> e' p eta reaction at and above the S11(1535) baryon resonance

    Full text link
    New cross sections for the reaction e p -> ep eta are reported for total center of mass energy W = 1.5--1.86 GeV and invariant momentum transfer Q^2 = 0.25--1.5 GeV^2. This large kinematic range allows extraction of important new information about response functions, photocouplings, and eta N coupling strengths of baryon resonances. Expanded W coverage shows sharp structure at W \~ 1.7 GeV; this is shown to come from interference between S and P waves and can be interpreted in terms of known resonances. Improved values are derived for the photon coupling amplitude for the S11(1535) resonance.Comment: 11 pages, RevTeX, 5 figures, submitted to Phys. Rev. Let

    Measurement of Inclusive Spin Structure Functions of the Deuteron

    Full text link
    We report the results of a new measurement of spin structure functions of the deuteron in the region of moderate momentum transfer (Q2Q^2 = 0.27 -- 1.3 (GeV/c)2^2) and final hadronic state mass in the nucleon resonance region (WW = 1.08 -- 2.0 GeV). We scattered a 2.5 GeV polarized continuous electron beam at Jefferson Lab off a dynamically polarized cryogenic solid state target (15^{15}ND3_3) and detected the scattered electrons with the CEBAF Large Acceptance Spectrometer (CLAS). From our data, we extract the longitudinal double spin asymmetry AA_{||} and the spin structure function g1dg_1^d. Our data are generally in reasonable agreement with existing data from SLAC where they overlap, and they represent a substantial improvement in statistical precision. We compare our results with expectations for resonance asymmetries and extrapolated deep inelastic scaling results. Finally, we evaluate the first moment of the structure function g1dg_1^d and study its approach to both the deep inelastic limit at large Q2Q^2 and to the Gerasimov-Drell-Hearn sum rule at the real photon limit (Q20Q^2 \to 0). We find that the first moment varies rapidly in the Q2Q^2 range of our experiment and crosses zero at Q2Q^2 between 0.5 and 0.8 (GeV/c)2^2, indicating the importance of the Δ\Delta resonance at these momentum transfers.Comment: 13 pages, 8 figures, ReVTeX 4, final version as accepted by Phys. Rev.

    Q2Q^2 Dependence of Quadrupole Strength in the γpΔ+(1232)pπ0\gamma^*p\to\Delta^+(1232)\to p \pi^0 Transition

    Full text link
    Models of baryon structure predict a small quadrupole deformation of the nucleon due to residual tensor forces between quarks or distortions from the pion cloud. Sensitivity to quark versus pion degrees of freedom occurs through the Q2Q^2 dependence of the magnetic (M1+M_{1+}), electric (E1+E_{1+}), and scalar (S1+S_{1+}) multipoles in the γpΔ+pπ0\gamma^* p \to \Delta^+ \to p \pi^0 transition. We report new experimental values for the ratios E1+/M1+E_{1+}/M_{1+} and S1+/M1+S_{1+}/M_{1+} over the range Q2Q^2= 0.4-1.8 GeV2^2, extracted from precision p(e,ep)πp(e,e 'p)\pi^{\circ} data using a truncated multipole expansion. Results are best described by recent unitary models in which the pion cloud plays a dominant role.Comment: 5 pages, 5 figures, 1 table. To be published in Phys. Rev. Lett. (References, figures and table updated, minor changes.

    Measurements of Transverse Energy Flow in Deep-Inelastic Scattering at HERA

    Full text link
    Measurements of transverse energy flow are presented for neutral current deep-inelastic scattering events produced in positron-proton collisions at HERA. The kinematic range covers squared momentum transfers Q^2 from 3.2 to 2,200 GeV^2, the Bjorken scaling variable x from 8.10^{-5} to 0.11 and the hadronic mass W from 66 to 233 GeV. The transverse energy flow is measured in the hadronic centre of mass frame and is studied as a function of Q^2, x, W and pseudorapidity. A comparison is made with QCD based models. The behaviour of the mean transverse energy in the central pseudorapidity region and an interval corresponding to the photon fragmentation region are analysed as a function of Q^2 and W.Comment: 26 pages, 8 figures, submitted to Eur. Phys.

    Forward pi^0 Production and Associated Transverse Energy Flow in Deep-Inelastic Scattering at HERA

    Full text link
    Deep-inelastic positron-proton interactions at low values of Bjorken-x down to x \approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons are studied with the H1 experiment at HERA. The inclusive cross section for pi^0 mesons produced at small angles with respect to the proton remnant (the forward region) is presented as a function of the transverse momentum and energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x. Measurements are also presented of the transverse energy flow in events containing a forward pi^0 meson. Hadronic final state calculations based on QCD models implementing different parton evolution schemes are confronted with the data.Comment: 27 pages, 8 figures and 3 table

    Searches at HERA for Squarks in R-Parity Violating Supersymmetry

    Get PDF
    A search for squarks in R-parity violating supersymmetry is performed in e^+p collisions at HERA at a centre of mass energy of 300 GeV, using H1 data corresponding to an integrated luminosity of 37 pb^(-1). The direct production of single squarks of any generation in positron-quark fusion via a Yukawa coupling lambda' is considered, taking into account R-parity violating and conserving decays of the squarks. No significant deviation from the Standard Model expectation is found. The results are interpreted in terms of constraints within the Minimal Supersymmetric Standard Model (MSSM), the constrained MSSM and the minimal Supergravity model, and their sensitivity to the model parameters is studied in detail. For a Yukawa coupling of electromagnetic strength, squark masses below 260 GeV are excluded at 95% confidence level in a large part of the parameter space. For a 100 times smaller coupling strength masses up to 182 GeV are excluded.Comment: 32 pages, 14 figures, 3 table

    Observation of Nuclear Scaling in the A(e,e)A(e,e^{\prime}) Reaction at xB>x_B>1

    Full text link
    The ratios of inclusive electron scattering cross sections of 4^4He, 12^{12}C, and 56^{56}Fe to 3^3He have been measured for the first time. It is shown that these ratios are independent of xBx_B at Q2>^2>1.4 (GeV/c)2^2 for xB>x_B> 1.5 where the inclusive cross section depends primarily on the high-momentum components of the nuclear wave function. The observed scaling shows that the momentum distributions at high-momenta have the same shape for all nuclei and differ only by a scale factor. The observed onset of the scaling at Q2>^2>1.4 and xB>x_B >1.5 is consistent with the kinematical expectation that two nucleon short range correlations (SRC) are dominate the nuclear wave function at pmp_m\gtrsim 300 MeV/c. The values of these ratios in the scaling region can be related to the relative probabilities of SRC in nuclei with A\ge3. Our data demonstrate that for nuclei with A\geq12 these probabilities are 5-5.5 times larger than in deuterium, while for 4^4He it is larger by a factor of about 3.5.Comment: 11 pages, 10 figure

    Deep-Inelastic Inclusive ep Scattering at Low x and a Determination of alpha_s

    Get PDF
    A precise measurement of the inclusive deep-inelastic e^+p scattering cross section is reported in the kinematic range 1.5<= Q^2 <=150 GeV^2 and 3*10^(-5)<= x <=0.2. The data were recorded with the H1 detector at HERA in 1996 and 1997, and correspond to an integrated luminosity of 20 pb^(-1). The double differential cross section, from which the proton structure function F_2(x,Q^2) and the longitudinal structure function F_L(x,Q^2) are extracted, is measured with typically 1% statistical and 3% systematic uncertainties. The measured partial derivative (dF_2(x,Q^2)/dln Q^2)_x is observed to rise continuously towards small x for fixed Q^2. The cross section data are combined with published H1 measurements at high Q^2 for a next-to-leading order DGLAP QCD analysis.The H1 data determine the gluon momentum distribution in the range 3*10^(-4)<= x <=0.1 to within an experimental accuracy of about 3% for Q^2 =20 GeV^2. A fit of the H1 measurements and the mu p data of the BCDMS collaboration allows the strong coupling constant alpha_s and the gluon distribution to be simultaneously determined. A value of alpha _s(M_Z^2)=0.1150+-0.0017 (exp) +0.0009-0.0005 (model) is obtained in NLO, with an additional theoretical uncertainty of about +-0.005, mainly due to the uncertainty of the renormalisation scale.Comment: 68 pages, 24 figures and 18 table
    corecore