58 research outputs found

    How Do Deepfakes Move? Motion Magnification for Deepfake Source Detection

    Full text link
    With the proliferation of deep generative models, deepfakes are improving in quality and quantity everyday. However, there are subtle authenticity signals in pristine videos, not replicated by SOTA GANs. We contrast the movement in deepfakes and authentic videos by motion magnification towards building a generalized deepfake source detector. The sub-muscular motion in faces has different interpretations per different generative models which is reflected in their generative residue. Our approach exploits the difference between real motion and the amplified GAN fingerprints, by combining deep and traditional motion magnification, to detect whether a video is fake and its source generator if so. Evaluating our approach on two multi-source datasets, we obtain 97.17% and 94.03% for video source detection. We compare against the prior deepfake source detector and other complex architectures. We also analyze the importance of magnification amount, phase extraction window, backbone network architecture, sample counts, and sample lengths. Finally, we report our results for different skin tones to assess the bias

    My Face My Choice: Privacy Enhancing Deepfakes for Social Media Anonymization

    Full text link
    Recently, productization of face recognition and identification algorithms have become the most controversial topic about ethical AI. As new policies around digital identities are formed, we introduce three face access models in a hypothetical social network, where the user has the power to only appear in photos they approve. Our approach eclipses current tagging systems and replaces unapproved faces with quantitatively dissimilar deepfakes. In addition, we propose new metrics specific for this task, where the deepfake is generated at random with a guaranteed dissimilarity. We explain access models based on strictness of the data flow, and discuss impact of each model on privacy, usability, and performance. We evaluate our system on Facial Descriptor Dataset as the real dataset, and two synthetic datasets with random and equal class distributions. Running seven SOTA face recognizers on our results, MFMC reduces the average accuracy by 61%. Lastly, we extensively analyze similarity metrics, deepfake generators, and datasets in structural, visual, and generative spaces; supporting the design choices and verifying the quality.Comment: 2023 IEEE Winter Conference on Applications of Computer Vision (WACV

    How Do the Hearts of Deep Fakes Beat? Deep Fake Source Detection via Interpreting Residuals with Biological Signals

    Full text link
    Fake portrait video generation techniques have been posing a new threat to the society with photorealistic deep fakes for political propaganda, celebrity imitation, forged evidences, and other identity related manipulations. Following these generation techniques, some detection approaches have also been proved useful due to their high classification accuracy. Nevertheless, almost no effort was spent to track down the source of deep fakes. We propose an approach not only to separate deep fakes from real videos, but also to discover the specific generative model behind a deep fake. Some pure deep learning based approaches try to classify deep fakes using CNNs where they actually learn the residuals of the generator. We believe that these residuals contain more information and we can reveal these manipulation artifacts by disentangling them with biological signals. Our key observation yields that the spatiotemporal patterns in biological signals can be conceived as a representative projection of residuals. To justify this observation, we extract PPG cells from real and fake videos and feed these to a state-of-the-art classification network for detecting the generative model per video. Our results indicate that our approach can detect fake videos with 97.29% accuracy, and the source model with 93.39% accuracy.Comment: To be published in the proceedings of 2020 IEEE/IAPR International Joint Conference on Biometrics (IJCB

    My Art My Choice: Adversarial Protection Against Unruly AI

    Full text link
    Generative AI is on the rise, enabling everyone to produce realistic content via publicly available interfaces. Especially for guided image generation, diffusion models are changing the creator economy by producing high quality low cost content. In parallel, artists are rising against unruly AI, since their artwork are leveraged, distributed, and dissimulated by large generative models. Our approach, My Art My Choice (MAMC), aims to empower content owners by protecting their copyrighted materials from being utilized by diffusion models in an adversarial fashion. MAMC learns to generate adversarially perturbed "protected" versions of images which can in turn "break" diffusion models. The perturbation amount is decided by the artist to balance distortion vs. protection of the content. MAMC is designed with a simple UNet-based generator, attacking black box diffusion models, combining several losses to create adversarial twins of the original artwork. We experiment on three datasets for various image-to-image tasks, with different user control values. Both protected image and diffusion output results are evaluated in visual, noise, structure, pixel, and generative spaces to validate our claims. We believe that MAMC is a crucial step for preserving ownership information for AI generated content in a flawless, based-on-need, and human-centric way

    Topology-Aware Loss for Aorta and Great Vessel Segmentation in Computed Tomography Images

    Full text link
    Segmentation networks are not explicitly imposed to learn global invariants of an image, such as the shape of an object and the geometry between multiple objects, when they are trained with a standard loss function. On the other hand, incorporating such invariants into network training may help improve performance for various segmentation tasks when they are the intrinsic characteristics of the objects to be segmented. One example is segmentation of aorta and great vessels in computed tomography (CT) images where vessels are found in a particular geometry in the body due to the human anatomy and they mostly seem as round objects on a 2D CT image. This paper addresses this issue by introducing a new topology-aware loss function that penalizes topology dissimilarities between the ground truth and prediction through persistent homology. Different from the previously suggested segmentation network designs, which apply the threshold filtration on a likelihood function of the prediction map and the Betti numbers of the ground truth, this paper proposes to apply the Vietoris-Rips filtration to obtain persistence diagrams of both ground truth and prediction maps and calculate the dissimilarity with the Wasserstein distance between the corresponding persistence diagrams. The use of this filtration has advantage of modeling shape and geometry at the same time, which may not happen when the threshold filtration is applied. Our experiments on 4327 CT images of 24 subjects reveal that the proposed topology-aware loss function leads to better results than its counterparts, indicating the effectiveness of this use

    DeepGlobe 2018: A Challenge to Parse the Earth through Satellite Images

    Full text link
    We present the DeepGlobe 2018 Satellite Image Understanding Challenge, which includes three public competitions for segmentation, detection, and classification tasks on satellite images. Similar to other challenges in computer vision domain such as DAVIS and COCO, DeepGlobe proposes three datasets and corresponding evaluation methodologies, coherently bundled in three competitions with a dedicated workshop co-located with CVPR 2018. We observed that satellite imagery is a rich and structured source of information, yet it is less investigated than everyday images by computer vision researchers. However, bridging modern computer vision with remote sensing data analysis could have critical impact to the way we understand our environment and lead to major breakthroughs in global urban planning or climate change research. Keeping such bridging objective in mind, DeepGlobe aims to bring together researchers from different domains to raise awareness of remote sensing in the computer vision community and vice-versa. We aim to improve and evaluate state-of-the-art satellite image understanding approaches, which can hopefully serve as reference benchmarks for future research in the same topic. In this paper, we analyze characteristics of each dataset, define the evaluation criteria of the competitions, and provide baselines for each task.Comment: Dataset description for DeepGlobe 2018 Challenge at CVPR 201
    • …
    corecore