783 research outputs found

    The development of electrolytes for intermediate temperature solid oxide fuel cells

    Full text link
    This report describes a number of experimental studies on the solid state electrolytes for intermediate temperature solid oxide fuel cells (IT-SOFCs): Ce1-xLnxO2-δ (Ln = La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Yb), some multicomponent systems Ce1-xLnx/2Ln x/2O2-δ (x = 0 - 0.20; Ln = Sm, La, Gd and L'n = Dy, Nd, Y), some systems with simultaneous doping by rare earth and alkali earth elements Ce0.8(Sm1-xMx)0.2O2-δ (M = Ca, Sr; x = 0.0 - 1.0) and Ce0.8(Sm1-x-yBayMx)0.2O2-δ (M = Ca, Sr; x = 0, 0.15, 0.20; y = 0.05, 0.1). Two important aspects are emphasized: the effect of different dopants' ionic radius and concentration on the electrical properties of CeO2 based solid solutions and the influence of the method of preparation on the structural properties of ceria ceramics and the electrochemical performance of single SOFCs on their base. To describe the electrolytic properties of solid electrolytes the notation of the electrolytic domain boundary (EDB) - the critical oxygen partial pressure P*O2 at which the values of the electronic and ionic components of conductivity are equal, were calculated and presented. The interpretation of these data will lead to a better understanding of, subsequent improvements to and ultimately, the commercialization of IT-SOFCs in Russia. © 2014 WIT Press.International Journal of Safety and Security Engineering;International Journal of Sustainable Development and Planning;WIT Transactions on Ecology and the Environmen

    Specific heat and magnetocaloric effect in Pr1-xAgxMnO3 manganites

    Full text link
    The magnetocaloric effect in alternating magnetic fields has been investigated in Pr1-xAgxMnO3 manganites with x=0.05-0.25. The stepwise reversal of the sign of the magnetocaloric effect has been revealed in a weakly doped sample (x=0.05) at low temperatures (~80 K). This reversal is attributed to the coexistence of the ferromagnetic and canted antiferromagnetic phases with different critical temperatures.Comment: 4 pages, 4 figure

    Proton-3^{3}He elastic scattering at low energies

    Get PDF
    We present new accurate measurements of the differential cross section σ(θ)\sigma(\theta) and the proton analyzing power AyA_{y} for proton-3^{3}He elastic scattering at various energies. A supersonic gas jet target has been employed to obtain these low energy cross section measurements. The σ(θ)\sigma(\theta) distributions have been measured at EpE_{p} = 0.99, 1.59, 2.24, 3.11, and 4.02 MeV. Full angular distributions of AyA_{y} have been measured at EpE_{p} = 1.60, 2.25, 3.13, and 4.05 MeV. This set of high-precision data is compared to four-body variational calculations employing realistic nucleon-nucleon (NN) and three-nucleon (3N) interactions. For the unpolarized cross section the agreement between the theoretical calculation and data is good when a 3N3N potential is used. The comparison between the calculated and measured proton analyzing powers reveals discrepancies of approximately 50% at the maximum of each distribution. This is analogous to the existing ``AyA_{y} Puzzle'' known for the past 20 years in nucleon-deuteron elastic scattering.Comment: 22 pages, 9 figures, to be published in Physical Review C, corrected reference 4

    The fractal method for analysis of macro models of the celestial bodies surface

    Get PDF
    © 2016, Education and Upbringing Publishing. All rights reserved.In case of building a model of physical surface of celestial body scientists are dealing with a system of parameters whose precision depends on an order of spherical functions series expansion. For significant precision a complicated figure forms and it is almost impossible to describe that with the classical approach. Thereby conducting a comparative analysis of the classical models built on the basis of various observations is quite complicated. The aim of this work is to apply a fractal analysis for topographic and selenographic models investigation. The approach based on fractal similarity of physical structures was used for classical models and models of the librational zone of the Moon, that had been built by expansion in a series of spherical functions in the dynamical coordinate system. As a result, the fractal dimensions of the librational zone of the Moon determined for the mentioned models at various angles have been obtained

    Analysis of 430322 lunar occultations

    Get PDF
    © SGEM2017 All Rights Reserved. In the present work for the first time in the world practice 430322 occultations of stars by the Moon are analyzed. The relevance of the work is that the accuracy analysis of stars' proper motion in modern star catalogues can only be conducted using either observations of small planets or occultations, since only those observations are long-term and homogenous in time. When making the occultation database a comparative analysis has been used to study types and accuracy of occultation. For photoelectric observations were increased weights in this analysis, but only marginally, because the considerable contribution to the errors there are from the catalogue positions of the stars and the corrections for the outline of the Moon. The Russian occultations database has been independently analyzed. The photoelectric occultations database has been analyzed as well. In particular, there is a database of observations of occultations including 225121 objects taken from 1943 to 1980 in Greenwich observatory. But that database does not contain observations of occultations taken in Russia. The number of those observations is 7698. We adjusted this lack. We also keep constructing the full database of occultations using the Internet, printed editions, and data provided by the scientists of National Astronomical Observatory of Japan (NAOJ). As a result, the number of occultation observations was increased to 430322. Approximately 94.3% of those observations are taken by the visual method using telescope of comparatively small aperture. Around 11 % of them were taken by professional astronomers, the rest – by amateurs. About 5.7 % of all the observations are taken by photoelectric method, which implies recording an occultation with an accuracy of 0.001 sec. In conclusion it should be noted that the occultations database is going to be used for studying modern space catalogues, such as Hipparcos, UCAC 4, “Gaia” space mission etc

    A solution to the problem of clustered objects compact partitioning

    Get PDF
    The urgency of the study consists in the fact that an object arrangement topology of a distributed system is often nonuniform. Objects can be placed at different distances from each other, thus forming clusters. That is why solving the problem of compact partitioning into sets containing thousands of objects requires the most effective way to a better use of natural structuring of objects that form clusters. The aim of the study is the development of methods of compact partitioning of sets of objects presented as clusters. The research methods are based on applied theories of sets, theory of compact sets and compact partitions, and linear programming methods with Boolean variables. As a result, the paper offers the method necessary to analyze composition and content of clusters. It also evaluates cluster compactness, which results in the decision to include clusters into the sets of partitions. It addresses the problem of optimizing the rearrangement of objects between compact sets that form clusters, which is based on the criteria of maximizing the total compactness of sets. The problem is formulated in the class of objectives of linear programming methods with Boolean variables. It introduces the example of object rearrangement

    The explanation of unexpected temperature dependence of the muon catalysis in solid deuterium

    Full text link
    It is shown that due to the smallness of the inelastic cross-section of the dμd\mu-atoms scattering in the crystal lattice at sufficiently low temperatures the ddμdd\mu-mesomolecules formation from the upper state of the hyperfine structure dμ(F=3/2)d\mu (F=3/2) starts earlier than the mesoatoms thermolization. It explains an approximate constancy of the ddμdd\mu-mesomolecule formation rate in solid deuterium.Comment: 6 pages, 2 jpeg-figure

    Computers from plants we never made. Speculations

    Full text link
    We discuss possible designs and prototypes of computing systems that could be based on morphological development of roots, interaction of roots, and analog electrical computation with plants, and plant-derived electronic components. In morphological plant processors data are represented by initial configuration of roots and configurations of sources of attractants and repellents; results of computation are represented by topology of the roots' network. Computation is implemented by the roots following gradients of attractants and repellents, as well as interacting with each other. Problems solvable by plant roots, in principle, include shortest-path, minimum spanning tree, Voronoi diagram, α\alpha-shapes, convex subdivision of concave polygons. Electrical properties of plants can be modified by loading the plants with functional nanoparticles or coating parts of plants of conductive polymers. Thus, we are in position to make living variable resistors, capacitors, operational amplifiers, multipliers, potentiometers and fixed-function generators. The electrically modified plants can implement summation, integration with respect to time, inversion, multiplication, exponentiation, logarithm, division. Mathematical and engineering problems to be solved can be represented in plant root networks of resistive or reaction elements. Developments in plant-based computing architectures will trigger emergence of a unique community of biologists, electronic engineering and computer scientists working together to produce living electronic devices which future green computers will be made of.Comment: The chapter will be published in "Inspired by Nature. Computing inspired by physics, chemistry and biology. Essays presented to Julian Miller on the occasion of his 60th birthday", Editors: Susan Stepney and Andrew Adamatzky (Springer, 2017

    DBSolve Optimum: a software package for kinetic modeling which allows dynamic visualization of simulation results

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Systems biology research and applications require creation, validation, extensive usage of mathematical models and visualization of simulation results by end-users. Our goal is to develop novel method for visualization of simulation results and implement it in simulation software package equipped with the sophisticated mathematical and computational techniques for model development, verification and parameter fitting.</p> <p>Results</p> <p>We present mathematical simulation workbench DBSolve Optimum which is significantly improved and extended successor of well known simulation software DBSolve5. Concept of "dynamic visualization" of simulation results has been developed and implemented in DBSolve Optimum. In framework of the concept graphical objects representing metabolite concentrations and reactions change their volume and shape in accordance to simulation results. This technique is applied to visualize both kinetic response of the model and dependence of its steady state on parameter. The use of the dynamic visualization is illustrated with kinetic model of the Krebs cycle.</p> <p>Conclusion</p> <p>DBSolve Optimum is a user friendly simulation software package that enables to simplify the construction, verification, analysis and visualization of kinetic models. Dynamic visualization tool implemented in the software allows user to animate simulation results and, thereby, present them in more comprehensible mode. DBSolve Optimum and built-in dynamic visualization module is free for both academic and commercial use. It can be downloaded directly from <url>http://www.insysbio.ru</url>.</p
    corecore