15 research outputs found

    Water level-dependent morphological plasticity in Sagittaria montevidensis Cham. and Schl. (Alismataceae).

    No full text
    Aquatic plants are able to alter their morphology in response to environmental condition variation, such as water level fluctuations. The aim of this study was to evaluate the effect of water level on Sagittaria montevidensis morphology through measures of vegetative structures formed in drought and flood periods. We hypothesised that the plant height and the biomass of S. montevidensis leaves will increase during flood periods, while the biomass and diameter of petioles, and the basal plant area will increase during dry periods. We sampled a total amount of 270 individuals in nine sediment banks per visit, totalling 1080 plants. In order to compare plant morphology between dry and flood periods, we measured the water level in each bank and took the following variables for each plant: diameter, height and diameter of the biggest petiole. In order to compare biomass allocation between dry and flood periods, we sampled a total amount of 90 individuals in nine sediment banks per visit, totalling 360 plants. Plants were dried and weighed in the laboratory. All measured morphologic traits, as well as the biomass of leaf blades and petioles, were higher during flood periods, indicating that water level highly influences the morphology of S. montevidensis individuals. Our results suggest that these morphological responses allow survival and maintenance of S. montevidensis populations under environmental stress. These results can be linked to the invasive potential of S. montevidensis and sheds light on basic management practices that may be applied in the future

    Water level-dependent morphological plasticity in Sagittaria montevidensis Cham. and Schl. (Alismataceae).

    No full text
    Aquatic plants are able to alter their morphology in response to environmental condition variation, such as water level fluctuations. The aim of this study was to evaluate the effect of water level on Sagittaria montevidensis morphology through measures of vegetative structures formed in drought and flood periods. We hypothesised that the plant height and the biomass of S. montevidensis leaves will increase during flood periods, while the biomass and diameter of petioles, and the basal plant area will increase during dry periods. We sampled a total amount of 270 individuals in nine sediment banks per visit, totalling 1080 plants. In order to compare plant morphology between dry and flood periods, we measured the water level in each bank and took the following variables for each plant: diameter, height and diameter of the biggest petiole. In order to compare biomass allocation between dry and flood periods, we sampled a total amount of 90 individuals in nine sediment banks per visit, totalling 360 plants. Plants were dried and weighed in the laboratory. All measured morphologic traits, as well as the biomass of leaf blades and petioles, were higher during flood periods, indicating that water level highly influences the morphology of S. montevidensis individuals. Our results suggest that these morphological responses allow survival and maintenance of S. montevidensis populations under environmental stress. These results can be linked to the invasive potential of S. montevidensis and sheds light on basic management practices that may be applied in the future

    Body size and clonality consequences for sexual reproduction in a perennial herb of Brazilian rupestrian grasslands

    No full text
    Body size is one of the most important factors regarding herbaceous perennial plants life-histories, and several fitness components of these organisms are related to size. Clonal plants show distinct kinds of reproduction and can develop offspring by sexual or asexual ways. We aimed to understand how body size affects Comanthera nivea (Eriocaulaceae) sexual reproduction and to verify how clonal growth is related to flower head production in this species. We sampled 600 rosettes in rupestrian grasslands and performed linear regression analysis between body size and number of produced flower heads. We also compared the flower head production between isolated rosettes and rosettes within clones. Our results showed that body size was significantly related, but explained only a small part of flower head production. The flower head production was higher in rosettes within clones than in isolated ones. The clones presented a rosette or a small group of rosettes that concentrated the sexual reproduction. Clonality was positively associated with sexual reproduction. Clonality can represent an important way of allowing the persistence of plants by sexual reproduction in markedly seasonal stressful environments. The cases of clonality enhancing the sexual reproduction must be considered and put in focus on reproductive biology research

    Soil factors effects on life history attributes of Leiothrix spiralis and Leiothrix vivipara (Eriocaulaceae) on rupestrian grasslands in Southeastern Brazil

    No full text
    In this study, we hypothesized that the life history traits of Leiothrix spiralis and L. vivipara would be linked to soil factors of the rupestrian grasslands and that rosette size would be influenced by soil moisture. Soil analyses were performed from five populations of L. spiralis and four populations of L. vivipara. In each area, three replicates were employed in 19 areas of occurrence of Leiothrix species, and we quantified the life history attributes. The microhabitats of these species show low favorability regarding to soil factors. During the dry season, their rosettes decreased in diameter due the loss of its most outlying leaves. The absence of seedlings indicated the low fecundity of both species. However, both species showed rapid population growth by pseudovivipary. Both L. spiralis and L. vivipara exhibit a kind of parental care that was quantified by the presence of connections between parental-rosettes and ramets. The findings of the present study show that the life history traits are linked to soil factors

    Soil factors effects on life history attributes of Leiothrix spiralis and Leiothrix vivipara (Eriocaulaceae) on rupestrian grasslands in Southeastern Brazil

    No full text
    In this study, we hypothesized that the life history traits of Leiothrix spiralis and L. vivipara would be linked to soil factors of the rupestrian grasslands and that rosette size would be influenced by soil moisture. Soil analyses were performed from five populations of L. spiralis and four populations of L. vivipara. In each area, three replicates were employed in 19 areas of occurrence of Leiothrix species, and we quantified the life history attributes. The microhabitats of these species show low favorability regarding to soil factors. During the dry season, their rosettes decreased in diameter due the loss of its most outlying leaves. The absence of seedlings indicated the low fecundity of both species. However, both species showed rapid population growth by pseudovivipary. Both L. spiralis and L. vivipara exhibit a kind of parental care that was quantified by the presence of connections between parental-rosettes and ramets. The findings of the present study show that the life history traits are linked to soil factors
    corecore