40 research outputs found

    MKP1 mediates resistance to therapy in HER2-positive breast tumors.

    Get PDF
    Mitogen-activated protein kinase phosphatase 1 (MKP1 or DUSP1) is an antiapoptotic phosphatase that is overexpressed in many cancers, including breast cancer. MKP1 expression is inducible in radiation-treated breast cancer cells, and correlates with human epidermal growth factor receptor 2 (ERBB2, HER2) expression. The role of MKP1 in therapy resistance suggests that targeting MKP1 in HER2-positive breast tumors may significantly enhance the efficacy of anti-HER2 and other anticancer therapies

    Nanoparticles for live cell microscopy: A surface-enhanced Raman scattering perspective.

    Get PDF
    Surface enhanced Raman scattering (SERS) nanoparticles are an attractive alternative to fluorescent probes for biological labeling because of their photostability and multiplexing capabilities. However, nanoparticle size, shape, and surface properties are known to affect nanoparticle-cell interactions. Other issues such as the formation of a protein corona and antibody multivalency interfere with the labeling properties of nanoparticle-antibody conjugates. Hence, it is important to consider these aspects in order to validate such conjugates for live cell imaging applications. Using SERS nanoparticles that target HER2 and CD44 in breast cancer cells, we demonstrate labeling of fixed cells with high specificity that correlates well with fluorescent labels. However, when labeling live cells to monitor surface biomarker expression and dynamics, the nanoparticles are rapidly uptaken by the cells and become compartmentalized into different cellular regions. This behavior is in stark contrast to that of fluorescent antibody conjugates. This study highlights the impact of nanoparticle internalization and trafficking on the ability to use SERS nanoparticle-antibody conjugates to monitor cell dynamics

    Breast cancer adaptive resistance: HER2 and cancer stem cell repopulation in a heterogeneous tumor society

    Get PDF

    MnSOD in oxidative stress response-potential regulation via mitochondrial protein influx.

    No full text
    SignificanceThe mitochondrial antioxidant manganese superoxide dismutase (MnSOD) is encoded by genomic DNA and its dismutase function is fully activated in the mitochondria to detoxify free radical O2(•-) generated by mitochondrial respiration. Accumulating evidence shows an extensive communication between the mitochondria and cytoplasm under oxidative stress. Not only is the MnSOD gene upregulated by oxidative stress, but MnSOD activity can be enhanced via the mitochondrial protein influx (MPI).Recent advancesA cluster of MPI containing cytoplasmic/nuclear proteins, such as cyclins, cyclin-dependent kinases, and p53 interact with and alter MnSOD activity. These proteins modulate MnSOD superoxide scavenging activity via post-translational modifications in the mitochondria. In addition to well-established pathways in gene expression, recent findings suggest that MnSOD enzymatic activity can also be enhanced by phosphorylation of specific motifs in mitochondria. This review attempts to discuss the pre- and post-translational regulation of MnSOD, and how these modifications alter MnSOD activity, which induces a cell adaptive response to oxidative stress.Critical issuesMnSOD is biologically significant to aerobic cells. Its role in protecting the cells against the deleterious effects of reactive oxygen species is evident. However, the exact network of MnSOD-associated cellular adaptive reaction to oxidative stress and its post-translational modifications, especially its enzymatic enhancement via phosphorylation, is not yet fully understood.Future directionsThe broad discussion of the multiple aspects of MnSOD regulation, including gene expression, protein modifications, and enzymatic activity, will shed light onto the unknown mechanisms that govern the prosurvival networks involved in cellular and mitochondrial adaptive response to genotoxic environment
    corecore