13 research outputs found

    Hexa-X the European 6G Flagship Project

    Get PDF
    Hexa-X will pave the way to the next generation of wireless networks (Hexa) by explorative research (X). The Hexa-X vision is to connect human, physical, and digital worlds with a fabric of sixth generation (6G) key enablers. The vision is driven by the ambition to contribute to objectives of growth, global sustainability, trustworthiness, and digital inclusion. Key 6G value indicators and use cases are defined against the background of technology push, society and industry pull as well as objectives of technology sovereignty. Key areas of research have been formulated accordingly to include connecting intelligence, network of networks, sustainability, global service coverage, extreme experience, and trustworthiness. Critical technology enablers for 6G are developed in the project including, sub-THz transceiver technologies, accurate stand-alone positioning and radio-based imaging, improved radio performance, artificial intelligence (AI) / machine learning (ML) inspired radio access network (RAN) technologies, future network architectures and special purpose solutions including future ultra-reliable low-latency communication (URLLC) schemes. Besides technology enablers, early trials will be carried out to help assess viability and performance aspects of the key technology enablers. The 6G Hexa-X project is integral part of European and global research effort to help define the best possible next generation of networks

    Hexa-X the European 6G Flagship Project

    Get PDF
    Hexa-X will pave the way to the next generation of wireless networks (Hexa) by explorative research (X). The Hexa-X vision is to connect human, physical, and digital worlds with a fabric of sixth generation (6G) key enablers. The vision is driven by the ambition to contribute to objectives of growth, global sustainability, trustworthiness, and digital inclusion. Key 6G value indicators and use cases are defined against the background of technology push, society and industry pull as well as objectives of technology sovereignty. Key areas of research have been formulated accordingly to include connecting intelligence, network of networks, sustainability, global service coverage, extreme experience, and trustworthiness. Critical technology enablers for 6G are developed in the project including, sub-THz transceiver technologies, accurate stand-alone positioning and radio-based imaging, improved radio performance, artificial intelligence (AI) / machine learning (ML) inspired radio access network (RAN) technologies, future network architectures and special purpose solutions including future ultra-reliable low-latency communication (URLLC) schemes. Besides technology enablers, early trials will be carried out to help assess viability and performance aspects of the key technology enablers. The 6G Hexa-X project is integral part of European and global research effort to help define the best possible next generation of networks

    Setting 6G Architecture in Motion - the Hexa-X Approach

    No full text
    The most recent cellular generation, 5G, is being deployed on a large scale globally. The capabilities of 5G surpass all previous generations of cellular networks and support many new services compared to 4G. Despite this, at the same time, preparations for 6G have begun since user demands and technical development continuously push the boundaries of what is possible. Demands come not only from users. Also, society sets requirements, e.g., sustainability, coverage, and privacy. To support the necessary features in the network needed to meet the requirements, a new generation of the architecture is needed; one based on the most forward-looking design principles together with trends in networks, use cases, and whatnot. To show that the proposed new features will allow the future network to meet the set requirements, key performance indicators (KPIs) have to be defined. In this paper, we present six of the KPIs that the European 6G flagship project Hexa-X has identified as the fundamental ones to measure the most important aspects of a new 6G architecture

    Innovation management in 6G research:the case of Hexa-X project

    No full text
    Abstract Very often in the past, innovations from research communities have been disconnected from industry adoption, leading to a lack of exploitation of research projects. To overcome this issue, in the view of future 6G systems, the Hexa-X project is putting in place an Innovation Management (IM) process, aiming to facilitate and promote innovation opportunities based on project outcomes and ensure that all the ideas emerging from the project are captured and tracked, not “lost”. Focus of IM is on supporting the project to promptly identify innovations and engage with emerging innovation needs in the sector, for identifying gaps and potentials with strategic value. This paper presents the IM approach in Hexa-X and selected innovations (some of which also awarded by the EC Innovation Radar), with particular emphasis on the technical aspects of these findings coupled with their identified strategic value for future 6G market exploitation
    corecore