18 research outputs found

    Machine-learning-aided prediction of brain metastases development in non-small-cell lung cancers

    Get PDF
    Purpose Non–small-cell lung cancer (NSCLC) shows a high incidence of brain metastases (BM). Early detection is crucial to improve clinical prospects. We trained and validated classifier models to identify patients with a high risk of developing BM, as they could potentially benefit from surveillance brain MRI. Methods Consecutive patients with an initial diagnosis of NSCLC from January 2011 to April 2019 and an in-house chest-CT scan (staging) were retrospectively recruited at a German lung cancer center. Brain imaging was performed at initial diagnosis and in case of neurological symptoms (follow-up). Subjects lost to follow-up or still alive without BM at the data cut-off point (12/2020) were excluded. Covariates included clinical and/or 3D-radiomics-features of the primary tumor from staging chest-CT. Four machine learning models for prediction (80/20 training) were compared. Gini Importance and SHAP were used as measures of importance; sensitivity, specificity, area under the precision-recall curve, and Matthew's Correlation Coefficient as evaluation metrics. Results Three hundred and ninety-five patients compromised the clinical cohort. Predictive models based on clinical features offered the best performance (tuned to maximize recall: sensitivity∼70%, specificity∼60%). Radiomics features failed to provide sufficient information, likely due to the heterogeneity of imaging data. Adenocarcinoma histology, lymph node invasion, and histological tumor grade were positively correlated with the prediction of BM, age, and squamous cell carcinoma histology were negatively correlated. A subgroup discovery analysis identified 2 candidate patient subpopulations appearing to present a higher risk of BM (female patients + adenocarcinoma histology, adenocarcinoma patients + no other distant metastases). Conclusion Analysis of the importance of input features suggests that the models are learning the relevant relationships between clinical features/development of BM. A higher number of samples is to be prioritized to improve performance. Employed prospectively at initial diagnosis, such models can help select high-risk subgroups for surveillance brain MRI

    Increased HRD score in cisplatin resistant penile cancer cells

    Get PDF
    Penile cancer is a rare disease in demand for new therapeutic options. Frequently used combination chemotherapy with 5 fluorouracil (5-FU) and cisplatin (CDDP) in patients with metastatic penile cancer mostly results in the development of acquired drug resistance. Availability of cell culture models with acquired resistance against standard therapy could help to understand molecular mechanisms underlying chemotherapy resistance and to identify candidate treatments for an efficient second line therapy. We generated a cell line from a humanpapilloma virus (HPV) negative penile squamous cell carcinoma (UKF-PEC-1). This cell line was subject to chronic exposure to chemotherapy with CDDP and / or 5-FU to induce acquired resistance in the newly established chemo-resistant sublines (PEC-1 CDDP , adapted to 2500 ng/ml CDDP; UKF-PEC-1 5-FU , adapted to 500 ng/ml 5- FU; UKF-PEC1 CDDP / 5-FU , adapted to 2500 ng/ml CDDP and 500 ng/ml 5 -FU). Afterwards cell line pellets were formalin-fixed, paraffin embedded and subject to sequencing as well as testing for homologous recombination deficiency (HRD). Additionally, exemplary immunohistochemical stainings for p53 and gammaH2AX were applied for verification purposes. Finally, UKF-PEC-1 CDDP , UKF-PEC-1 5-FU , UKF-PEC1 CDDP / 5-FU , and UKF-PEC-3 (an alternative penis cancer cell line) were tested for sensitivity to paclitaxel, docetaxel, olaparib, and rucaparib. The chemo-resistant sublines differed in their mutational landscapes. UKF-PEC-1 CDDP was characterized by an increased HRD score, which is supposed to be associated with increased PARP inhibitor and immune checkpoint inhibitor sensitivity in cancer. However, UKF-PEC-1 CDDP did not display sensitivity to PARP inhibitors. [Abstract copyright: © 2022. The Author(s).

    Molecular matched targeted therapies for primary brain tumors—a single center retrospective analysis

    Get PDF
    PURPOSE: Molecular diagnostics including next generation gene sequencing are increasingly used to determine options for individualized therapies in brain tumor patients. We aimed to evaluate the decision-making process of molecular targeted therapies and analyze data on tolerability as well as signals for efficacy. METHODS: Via retrospective analysis, we identified primary brain tumor patients who were treated off-label with a targeted therapy at the University Hospital Frankfurt, Goethe University. We analyzed which types of molecular alterations were utilized to guide molecular off-label therapies and the diagnostic procedures for their assessment during the period from 2008 to 2021. Data on tolerability and outcomes were collected. RESULTS: 413 off-label therapies were identified with an increasing annual number for the interval after 2016. 37 interventions (9%) were targeted therapies based on molecular markers. Glioma and meningioma were the most frequent entities treated with molecular matched targeted therapies. Rare entities comprised e.g. medulloblastoma and papillary craniopharyngeoma. Molecular targeted approaches included checkpoint inhibitors, inhibitors of mTOR, FGFR, ALK, MET, ROS1, PIK3CA, CDK4/6, BRAF/MEK and PARP. Responses in the first follow-up MRI were partial response (13.5%), stable disease (29.7%) and progressive disease (46.0%). There were no new safety signals. Adverse events with fatal outcome (CTCAE grade 5) were not observed. Only, two patients discontinued treatment due to side effects. Median progression-free and overall survival were 9.1/18 months in patients with at least stable disease, and 1.8/3.6 months in those with progressive disease at the first follow-up MRI. CONCLUSION: A broad range of actionable alterations was targeted with available molecular therapeutics. However, efficacy was largely observed in entities with paradigmatic oncogenic drivers, in particular with BRAF mutations. Further research on biomarker-informed molecular matched therapies is urgently necessary. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11060-022-04049-w

    Increased MCL1 dependency leads to new applications of BH3-mimetics in drug-resistant neuroblastoma.

    Get PDF
    Neuroblastoma is a paediatric cancer that is characterised by poor prognosis for chemoresistant disease, highlighting the need for better treatment options. Here, we asked whether BH3-mimetics inhibiting BCL2 proteins may eliminate chemoresistant neuroblastoma cells. We utilised cisplatin-adapted neuroblastoma cell lines as well as patient tissues before and after relapse to study alterations of BCL2 proteins upon chemoresistance. In a direct comparison of cisplatin-resistant cells we identified a prominent loss of sensitivity to BCL2/BCL-X inhibitors that is associated with an increase in MCL1 dependency and high expression of MCL1 in patient tumour tissues. Screening of FDA-approved anti-cancer drugs in chemoresistant cells identified therapeutics that may be beneficial in combination with the clinically tested BH3-mimetic ABT263, but no synergistic drug interactions with the selective MCL1 inhibitor S63845. Further exploration of potential treatment options for chemoresistant neuroblastoma identified immunotherapy based on NK cells as highly promising, since NK cells are able to efficiently kill both parental and chemoresistant cells. These data highlight that the application of BH3-mimetics may differ between first line treatment and relapsed disease. Combination of NK cell-based immunotherapy with BH3-mimetics may further increase killing of chemoresistant neuroblastoma, outlining a new treatment strategy for relapsed neuroblastoma. [Abstract copyright: © 2023. The Author(s).

    Differential miRNA-Expression as an Adjunctive Diagnostic Tool in Neuroendocrine Tumors of the Lung

    No full text
    Pulmonary malignancies with neuroendocrine differentiation represent a rare subclass of lung carcinomas, which vary in the extent of differentiation and grade of biological aggressiveness. In particular, neuroendocrine tumors are classified into well differentiated typical and atypical carcinoids as well as poorly differentiated large cell neuroendocrine and small cell lung carcinomas. Tiny MicroRNAs have been identified as reliable classifiers in distinct cancer types and seem to play important roles in cellular processes like regulation of cell growth, differentiation and apoptosis. In the present study, two different microRNAs (miR-21 and miR-34a) were explored for their involvements in pathogenesis of subtypes and finally in differential diagnosis of pulmonary neuroendocrine tumors. miR-21 was upregulated in poorly differentiated neuroendocrine tumors (mean rank: 26.8; 28.75) as compared to carcinoids (mean rank: 12.33; 12.07) with a significance of 0.00033. High-expression levels of miR-34a were associated with atypical carcinoids (p = 0.010). A close association is implicated between the elevated miR-21 values in high-grade and miR-34a patterns in low-grade atypical neuroendocrine lung carcinomas, which could potentially be exploited as practical supportive markers for differential lung cancer diagnosis in routine. However, some additional extended research and validation studies are needed to utilize them as routine markers or potential molecular targets for personalized medicine

    Real-Time PCR Data Processing Shown by the Analysis of Colorectal Specific Candidate Genes, ERCC1, RRM1 and TS in Relation to β2M as Endogenous Control

    No full text
    Currently, quantitative real-time PCR (Q-PCR) of archival formalin-fixed, paraffin embedded (FFPE) tissue is a critical tool for research and is not well established in routine diagnostics. Therefore, continuous improvement in mathematics and statistics associated with interpreting final accurate and reproducible results are fundamental. This project describes and discusses specificity and sensitivity with respect to intra- and inter-assay variances by use of a commercial Human Reference RNA and individual RNA derived from colorectal cancer patients (n = 25). All patients were treated with 5-fluoruracil (5-FU) and a concomitant pelvic radiotherapy (50.4 Gy). Quality assessment of target tissue samples was evaluated by clinicopathological findings and optical density (OD) measurements. We analyzed the steady state messenger RNA (mRNA) expression level of a small panel of cancer relevant genes, excision repair cross-complementing group 1 (ERCC1), ribonucleoside-diphosphate reductase subunit M1 (RRM1), thymidylate synthase (TYMS) and ß-2microglobulin (ß-2M) as endogenous control. The mRNA of a Human Reference RNA, tumor and non-neoplastic material was reverse transcribed into its complementary DNA (cDNA). cDNA was amplified based on dual-labeled TaqMan real-time fluorescence measurements. The real-time efficiency and therefore the output data can be influenced through the kind of calibrator used, the amount and quality of used RNA and by the degree of individual assay variability. Each sample presents an individual amplification curve. Thus, confirmation of primer specificity, one or more invariant endogenous controls, RNA and cDNA quality, as well as real-time PCR amplification efficiencies and linearity calculations from individual slopes or R2-values must be included in each study

    A Comparison of Two Different FFPE Tissue Dissection Methods for Routine Diagnostics in Molecular Pathology: Manual Macrodissection versus Automated Microdissection Using the Roche “AVENIO Millisect” System

    No full text
    Currently, in routine diagnostics, most molecular testing is performed on formalin-fixed, paraffin-embedded tissue after a histomorphological assessment. In order to find the best possible and targeted individual therapy, knowing the mutational status of the tumour is crucial. The “AVENIO Millisect” system Roche introduced an automation solution for the dissection of tissue on slides. This technology allows the precise and fully automated dissection of the tumour area without wasting limited and valuable patient material. In this study, the digitally guided microdissection was directly compared to the manual macrodissection regarding the precision and duration of the procedure, their DNA concentrations as well as DNA qualities, and the overall costs in 24 FFPE samples. In 21 of 24 cases (87.5%), the DNA yields of the manually dissected samples were higher in comparison to the automatically dissected samples. Shorter execution times and lower costs were also benefits of the manual scraping process. Nevertheless, the DNA quality achieved with both methods was comparable, which is essential for further molecular testing. Therefore, it could be used as an additional tool for precise tumour enrichment

    Complete pathological response after neoadjuvant short-course immunotherapy with Ipilimumab and Nivolumab in locally advanced MSI-H/dMMR rectal cancer

    No full text
    Background: Patients with colorectal carcinoma and high-grade microsatellite instability (MSI-H) or deficiency in mismatch repair (dMMR) exceptionally respond to immune checkpoint inhibitors (ICIs). ICIs are more active in treatment-naïve patients than in patients with refractory MSI-H/dMMR metastatic colorectal cancer and even more active in patients with locally advanced tumors. Material and Methods: A 33-year-old male patient with Lynch syndrome was diagnosed with a locally advanced rectal cancer and refused standard neoadjuvant chemoradiation because of the potential harm of sexual dysfunction. MMR and microsatellite instability status were analyzed by immunohistochemistry and fragment length polymerase chain reaction followed by capillary electrophoresis. Results: After MSI-H/dMMR was confirmed, the patient was treated with ICIs (1 mg/kg ipilimumab at day 1 and 3 mg/kg nivolumab at day 1 and 15). A complete clinical response was documented at day 21 after start of treatment. The patient underwent a total mesorectal excision at day 30. In the extirpated tissue, a complete pathological response was confirmed. Conclusion: In MSI-H/dMMR locally advanced rectal cancer short-course ICI treatment is highly effective and may be discussed in patients with dMMR locally advanced rectal cancer

    The peri- and intratumoral immune cell infiltrate and PD-L1 status in invasive squamous cell carcinomas of the penis

    No full text
    Introduction: Penile carcinomas are rare tumors throughout Europe. Therefore, little attention is drawn to this disease. That makes it important to study tumor-associated key metrics and relate these to known data on penile neoplasias. Materials and methods: A cohort of 60 well-defined penile invasive carcinomas with known human papillomavirus (HPV) infection status was investigated. Data on tumor type, grading and staging were recorded. Additionally, data on the peri- and intratumoral immune cell infiltrate in a semiquanititave manner applying an HE stain were assessed. Results: Our study showed a significant correlation of immune cell infiltrate and pT stage with overall survival. Therefore, in a subset of tumors, PD-L1 staining was applied. For tumor proportion score (TPS), 26 of 30 samples (87%) were scored >0%. For the immune cell score (IC), 28 of 30 samples (93%) were defined as >0% and for CPS, 29 of 30 samples (97%) scored >0. PD-L1 expression was not associated with overall survival. Conclusion: PD-L1 is expressed in penile carcinomas, providing a rationale for targeted therapy with checkpoint inhibitors. We were able to show that immune reaction appears to be prognostically relevant. These data enhance the need for further studies on the immune cell infiltrate in penile neoplasias and show that PD-L1 expression is existent in our cohort, which may be a potential target for checkpoint inhibitor therapy

    The routine use of LCD-Array hybridisation technique for HPV subtyping in the diagnosis of penile carcinoma compared to other methods

    No full text
    Background: Routine human papillomavirus (HPV) testing is performed in cervival cancer and is required for classification of some head and neck cancers. In penile cancer a statement on HPV association of the carcinoma is required. In most cases p16 immunohistochemistry as a surrogate marker is applied in this setting. Since differing clinical outcomes for HPV positive and HPV negative tumors are described we await HPV testing to be requested more frequently by clinicians, also in the context of HPV vaccination, where other HPV subtypes are expected to emerge. Method: Therefore, a cohort of archived, formalin-fixed paraffin embedded (FFPE) penile neoplasias was stained for p16 and thereafter tested for HPV infection status via PCR based methods. Additionally to Sanger sequencing, we chose LCD-Array technique (HPV 3.5 LCD-Array Kit, Chipron; LCD-Array) for the detection of HPV in our probes expecting a less time consuming and sensitive HPV test for our probes. Results: We found that LCD-Array is a sensitive and feasible method for HPV testing in routine diagnostics applicable to FFPE material in our cohort. Our cohort of penile carcinomas and carcinomas in situ was associated with HPV infection in 61% of cases. We detected no significant association between HPV infection status and histomorphological tumor characteristics as well as overall survival. Conclusions: We showed usability of molecular HPV testing on a cohort of archived penile carcinomas. To the best of our knowledge, this is the first study investigating LCD-Array technique on a cohort of penile neoplasias
    corecore