5,155 research outputs found
Magellanic Cloud Periphery Carbon Stars IV: The SMC
The kinematics of 150 carbon stars observed at moderate dispersion on the
periphery of the Small Magellanic Cloud are compared with the motions of
neutral hydrogen and early type stars in the Inter-Cloud region. The
distribution of radial velocities implies a configuration of these stars as a
sheet inclined at 73+/-4 degrees to the plane of the sky. The near side, to the
South, is dominated by a stellar component; to the North, the far side contains
fewer carbon stars, and is dominated by the neutral gas. The upper velocity
envelope of the stars is closely the same as that of the gas. This
configuration is shown to be consistent with the known extension of the SMC
along the line of sight, and is attributed to a tidally induced disruption of
the SMC that originated in a close encounter with the LMC some 0.3 to 0.4 Gyr
ago. The dearth of gas on the near side of the sheet is attributed to ablation
processes akin to those inferred by Weiner & Williams (1996) to collisional
excitation of the leading edges of Magellanic Stream clouds. Comparison with
pre LMC/SMC encounter kinematic data of Hardy, Suntzeff, & Azzopardi (1989) of
carbon stars, with data of stars formed after the encounter, of Maurice et al.
(1989), and Mathewson et al. (a986, 1988) leaves little doubt that forces other
than gravity play a role in the dynamics of the H I.Comment: 30 pages; 7 figures, latex compiled, 1 table; to appear in AJ (June
2000
Recommended from our members
Modular control of fusion power heating applications
This work is motivated by the growing demand for auxiliary heating on small and large machines worldwide. Numerous present and planned RF experiments (EBW, Lower Hybrid, ICRF, and ECH) are increasingly complex systems. The operational challenges are indicative of a need for components of real-time control that can be implemented with a moderate amount of effort in a time- and cost-effective fashion. Such a system will improve experimental efficiency, enhance experimental quality, and expedite technological advancements. The modular architecture of this control-suite serves multiple purposes. It facilitates construction on various scales from single to multiple controller systems. It enables expandability of control from basic to complex via the addition of modules with varying functionalities. It simplifies the control implementation process by reducing layers of software and electronic development. While conceived with fusion applications in mind, this suite has the potential to serve a broad range of scientific and industrial applications. During the Phase-I research effort we established the overall feasibility of this modular control-suite concept. We developed the fundamental modules needed to implement open-loop active-control and demonstrated their use on a microwave power deposition experiment
Media outlets and their moguls: why concentrated individual or family ownership is bad for editorial independence
This article investigates the levels of owner influence in 211 different print and broadcast outlets in 32 different European media markets. Drawing on the literature from industrial organisation, it sets out reasons why we should expect greater levels of influence where ownership of individual outlets is concentrated; where it is concentrated in the hands of individuals or families; and where ownership groups own multiple outlets in the same media market. Conversely, we should expect lower levels of influence where ownership is dispersed between transnational companies. The articles uses original data on the ownership structures of these outlets, and combines it with reliable expert judgments as to the level of owner influence in each of the outlets. These hypotheses are tested and confirmed in a multilevel regression model of owner influence. The findings are relevant for policy on ownership limits in the media, and for the debate over transnational versus local control of media
Legacy mercury and stoichiometry with C, N, and S in soil, pore water, and stream water across the uplandâwetland interface: The influence of hydrogeologic setting
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/99104/1/2012JG002250R_Appendix_C_120728.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/99104/2/jgrg20066.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/99104/3/2012JG002250R_Appendix_B_100903.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/99104/4/2012JG002250R_Appendix_A_100907.pd
Peeping at chaos: Nondestructive monitoring of chaotic systems by measuring long-time escape rates
One or more small holes provide non-destructive windows to observe
corresponding closed systems, for example by measuring long time escape rates
of particles as a function of hole sizes and positions. To leading order the
escape rate of chaotic systems is proportional to the hole size and independent
of position. Here we give exact formulas for the subsequent terms, as sums of
correlation functions; these depend on hole size and position, hence yield
information on the closed system dynamics. Conversely, the theory can be
readily applied to experimental design, for example to control escape rates.Comment: Originally 4 pages and 2 eps figures incorporated into the text; v2
has more numerical results and discussion: now 6 pages, 4 figure
Mercury Accumulation in Tree Rings: Observed Trends in Quantity and Isotopic Composition in Shenandoah National Park, Virginia
Recent studies have shown that mercury (Hg) concentrations in tree rings have the potential to archive historical Hg exposure from local, regional, and global sources. The southeastern United States has received elevated Hg deposition, yet no studies have evaluated tree ring Hg in this region. Here, we quantify Hg accumulation and isotopic composition in tree rings collected in Shenandoah National Park, Virginia. Cores were collected from three individuals of three tree speciesâwhite oak (Quercus alba), northern red oak (Quercus rubra), and pitch pine (Pinus rigida)âwithin the northern, central, and southern areas of the Park (n = 27 cores). The cores were analyzed for Hg content in 10âyear increments, with some cores dating back to the early 1800s. Overall, tree ring Hg concentrations (ranging from below detection to 4.4 ng/g) were similar to other studies and varied between species, with pitch pine having higher concentrations than the deciduous species. The most notable feature of the tree ring Hg time series was a peak that occurred during the 1930s through 1950s, coinciding with the use of Hg at a local industrial facility. Atmospheric modeling indicates that potential emissions from the plant likely had a stronger impact on the southern region of the Park, consistent with the latitudinal gradient in tree ring Hg concentrations. Massâdependent and massâindependent fractionation of Hg isotopes suggests contributions from both regional anthropogenic and local industrial sources during this period. This study demonstrates the potential usefulness of tree ring dendrochemistry for identifying historical sources of atmospheric Hg exposure.Key PointsTree ring mercury levels in Shenandoah National Park, Virginia, were similar to those measured in other North American forestsTree ring mercury peaked during the 1930s to 1950s, coinciding with mercury use at an industrial facility near the southern end of the ParkMercury isotopes suggest a local source at this time, demonstrating the potential of dendrochemistry to identify historical sourcesPlain Language SummaryFor many years scientists have used tree rings to reconstruct past climate. Increasingly, tree rings are being used to document the historical exposure of trees to pollutants. In this study, we cored trees in Shenandoah National Park, Virginia, dated the tree rings, and then measured the amount of mercury stored within decadal core increments. We were surprised to find that mercury levels peaked in the 1930s to 1950s, even though global mercury emissions continued to rise throughout the past century, mostly as a byâproduct of energy production. Our findings suggest that the trees were exposed to a local pollutant source during this earlier time period, perhaps from a nearby industrial plant that used mercury in the production of rayon. By examining the chemistry of wood within tree rings, we can get a clearer picture of when and where human activities have affected air pollution over recent centuries.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153685/1/jgrg21576_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153685/2/jgrg21576.pd
Renormalized Thermodynamic Entropy of Black Holes in Higher Dimensions
We study the ultraviolet divergent structures of the matter (scalar) field in
a higher D-dimensional Reissner-Nordstr\"{o}m black hole and compute the matter
field contribution to the Bekenstein-Hawking entropy by using the Pauli-Villars
regularization method. We find that the matter field contribution to the black
hole entropy does not, in general, yield the correct renormalization of the
gravitational coupling constants. In particular we show that the matter field
contribution in odd dimensions does not give the term proportional to the area
of the black hole event horizon.Comment: Final Revision Form as to be published in Physical Review D, ReVTeX,
No Figure
The Nature of the Density Clump in the Fornax Dwarf Spheroidal Galaxy
We have imaged the recently discovered stellar overdensity located
approximately one core radius from the center of the Fornax dwarf spheroidal
galaxy using the Magellan Clay 6.5m telescope with the Magellan Instant Camera
(MagIC). Superb seeing conditions allowed us to probe the stellar populations
of this overdensity and of a control field within Fornax to a limiting
magnitude of R=26. The color-magnitude diagram of the overdensity field is
virtually identical to that of the control field with the exception of the
presence of a population arising from a very short (less than 300 Myr in
duration) burst of star formation 1.4 Gyr ago. Coleman et al. have argued that
this overdensity might be related to a shell structure in Fornax that was
created when Fornax captured a smaller galaxy. Our results are consistent with
this model, but we argue that the metallicity of this young component favors a
scenario in which the gas was part of Fornax itself.Comment: 24 pages including 8 figures and 3 tables. Accepted by Astronomical
Journa
Au-Ag template stripped pattern for scanning probe investigations of DNA arrays produced by Dip Pen Nanolithography
We report on DNA arrays produced by Dip Pen Nanolithography (DPN) on a novel
Au-Ag micro patterned template stripped surface. DNA arrays have been
investigated by atomic force microscopy (AFM) and scanning tunnelling
microscopy (STM) showing that the patterned template stripped substrate enables
easy retrieval of the DPN-functionalized zone with a standard optical
microscope permitting a multi-instrument and multi-technique local detection
and analysis. Moreover the smooth surface of the Au squares (abput 5-10
angstrom roughness) allows to be sensitive to the hybridization of the
oligonucleotide array with label-free target DNA. Our Au-Ag substrates,
combining the retrieving capabilities of the patterned surface with the
smoothness of the template stripped technique, are candidates for the
investigation of DPN nanostructures and for the development of label free
detection methods for DNA nanoarrays based on the use of scanning probes.Comment: Langmuir (accepted
Exploring Halo Substructure with Giant Stars IV: The Extended Structure of the Ursa Minor Dwarf Spheroidal
We present a large area photometric survey of the Ursa Minor dSph. We
identify UMi giant star candidates extending to ~3 deg from the center of the
dSph. Comparison to previous catalogues of stars within the tidal radius of UMi
suggests that our photometric luminosity classification is 100% accurate. Over
a large fraction of the survey area, blue horizontal branch stars associated
with UMi can also be identified. The spatial distribution of both the UMi giant
stars and the BHB stars are remarkably similar, and a large fraction of both
samples of stars are found outside the tidal radius of UMi. An isodensity
contour map of the stars within the tidal radius of UMi reveals two
morphological peculiarities: (1) The highest density of dSph stars is offset
from the center of symmetry of the outer isodensity contours. (2) The overall
shape of the outer contours appear S-shaped. We find that previously determined
King profiles with ~50' tidal radii do not fit well the distribution of our UMi
stars. A King profile with a larger tidal radius produces a reasonable fit,
however a power law with index -3 provides a better fit for radii > 20'. The
existence of UMi stars at large distances from the core of the galaxy, the
peculiar morphology of the dSph within its tidal radius, and the shape of its
surface density profile all suggest that UMi is evolving significantly due to
the tidal influence of the Milky Way. However, the photometric data on UMi
stars alone does not allow us to determine if the candidate extratidal stars
are now unbound or if they remain bound to the dSph within an extended dark
matter halo. (Abridged)Comment: accepted by AJ, 32 pages, 15 figures, emulateapj5 styl
- âŠ