20 research outputs found

    Automatic Glossary of Clinical Terminology: a Large-Scale Dictionary of Biomedical Definitions Generated from Ontological Knowledge

    Full text link
    Background: More than 400,000 biomedical concepts and some of their relationships are contained in SnomedCT, a comprehensive biomedical ontology. However, their concept names are not always readily interpretable by non-experts, or patients looking at their own electronic health records (EHR). Clear definitions or descriptions in understandable language are often not available. Therefore, generating human-readable definitions for biomedical concepts might help make the information they encode more accessible and understandable to a wider public. Objective: In this article, we introduce the Automatic Glossary of Clinical Terminology (AGCT), a large-scale biomedical dictionary of clinical concepts generated using high-quality information extracted from the biomedical knowledge contained in SnomedCT. Methods: We generate a novel definition for every SnomedCT concept, after prompting the OpenAI Turbo model, a variant of GPT 3.5, using a high-quality verbalization of the SnomedCT relationships of the to-be-defined concept. A significant subset of the generated definitions was subsequently judged by NLP researchers with biomedical expertise on 5-point scales along the following three axes: factuality, insight, and fluency. Results: AGCT contains 422,070 computer-generated definitions for SnomedCT concepts, covering various domains such as diseases, procedures, drugs, and anatomy. The average length of the definitions is 49 words. The definitions were assigned average scores of over 4.5 out of 5 on all three axes, indicating a majority of factual, insightful, and fluent definitions. Conclusion: AGCT is a novel and valuable resource for biomedical tasks that require human-readable definitions for SnomedCT concepts. It can also serve as a base for developing robust biomedical retrieval models or other applications that leverage natural language understanding of biomedical knowledge.Comment: Accepted at the BioNLP 2023 worksho

    BioLORD-2023: Semantic Textual Representations Fusing LLM and Clinical Knowledge Graph Insights

    Full text link
    In this study, we investigate the potential of Large Language Models to complement biomedical knowledge graphs in the training of semantic models for the biomedical and clinical domains. Drawing on the wealth of the UMLS knowledge graph and harnessing cutting-edge Large Language Models, we propose a new state-of-the-art approach for obtaining high-fidelity representations of biomedical concepts and sentences, consisting of three steps: an improved contrastive learning phase, a novel self-distillation phase, and a weight averaging phase. Through rigorous evaluations via the extensive BioLORD testing suite and diverse downstream tasks, we demonstrate consistent and substantial performance improvements over the previous state of the art (e.g. +2pts on MedSTS, +2.5pts on MedNLI-S, +6.1pts on EHR-Rel-B). Besides our new state-of-the-art biomedical model for English, we also distill and release a multilingual model compatible with 50+ languages and finetuned on 7 European languages. Many clinical pipelines can benefit from our latest models. Our new multilingual model enables a range of languages to benefit from our advancements in biomedical semantic representation learning, opening a new avenue for bioinformatics researchers around the world. As a result, we hope to see BioLORD-2023 becoming a precious tool for future biomedical applications.Comment: Preprint of upcoming journal articl

    BioDEX: Large-Scale Biomedical Adverse Drug Event Extraction for Real-World Pharmacovigilance

    Full text link
    Timely and accurate extraction of Adverse Drug Events (ADE) from biomedical literature is paramount for public safety, but involves slow and costly manual labor. We set out to improve drug safety monitoring (pharmacovigilance, PV) through the use of Natural Language Processing (NLP). We introduce BioDEX, a large-scale resource for Biomedical adverse Drug Event Extraction, rooted in the historical output of drug safety reporting in the U.S. BioDEX consists of 65k abstracts and 19k full-text biomedical papers with 256k associated document-level safety reports created by medical experts. The core features of these reports include the reported weight, age, and biological sex of a patient, a set of drugs taken by the patient, the drug dosages, the reactions experienced, and whether the reaction was life threatening. In this work, we consider the task of predicting the core information of the report given its originating paper. We estimate human performance to be 72.0% F1, whereas our best model achieves 62.3% F1, indicating significant headroom on this task. We also begin to explore ways in which these models could help professional PV reviewers. Our code and data are available: https://github.com/KarelDO/BioDEX.Comment: 28 page

    BioLORD: Learning ontological representations from definitions for biomedical concepts and their textual descriptions

    No full text
    This work introduces BioLORD, a new pre-training strategy for producing meaningful representations for clinical sentences and biomedical concepts. State-of-the-art methodologies operate by maximizing the similarity in representation of names referring to the same concept, and preventing collapse through contrastive learning. However, because biomedical names are not always self-explanatory, it sometimes results in non-semantic representations. BioLORD overcomes this issue by grounding its concept representations using definitions, as well as short descriptions derived from a multi-relational knowledge graph consisting of biomedical ontologies. Thanks to this grounding, our model produces more semantic concept representations that match more closely the hierarchical structure of ontologies. BioLORD establishes a new state of the art for text similarity on both clinical sentences (MedSTS) and biomedical concepts (MayoSRS)

    Detecting Idiomatic Multiword Expressions in Clinical Terminology using Definition-Based Representation Learning

    No full text
    This paper shines a light on the potential of definition-based semantic models for detecting idiomatic and semi-idiomatic multiword expressions (MWEs) in clinical terminology. Our study focuses on biomedical entities defined in the UMLS ontology and aims to help prioritize the translation efforts of these entities. In particular, we develop an effective tool for scoring the idiomaticity of biomedical MWEs based on the degree of similarity between the semantic representations of those MWEs and a weighted average of the representation of their constituents. We achieve this using a biomedical language model trained to produce similar representations for entity names and their definitions, called BioLORD. The importance of this definition-based approach is highlighted by comparing the BioLORD model to two other state-of-the-art biomedical language models based on Transformer: SapBERT and CODER. Our results show that the BioLORD model has a strong ability to identify idiomatic MWEs, not replicated in other models. Our corpus-free idiomaticity estimation helps ontology translators to focus on more challenging MWEs

    Detecting Idiomatic Multiword Expressions in Clinical Terminology using Definition-Based Representation Learning

    Full text link
    This paper shines a light on the potential of definition-based semantic models for detecting idiomatic and semi-idiomatic multiword expressions (MWEs) in clinical terminology. Our study focuses on biomedical entities defined in the UMLS ontology and aims to help prioritize the translation efforts of these entities. In particular, we develop an effective tool for scoring the idiomaticity of biomedical MWEs based on the degree of similarity between the semantic representations of those MWEs and a weighted average of the representation of their constituents. We achieve this using a biomedical language model trained to produce similar representations for entity names and their definitions, called BioLORD. The importance of this definition-based approach is highlighted by comparing the BioLORD model to two other state-of-the-art biomedical language models based on Transformer: SapBERT and CODER. Our results show that the BioLORD model has a strong ability to identify idiomatic MWEs, not replicated in other models. Our corpus-free idiomaticity estimation helps ontology translators to focus on more challenging MWEs.Comment: Best Paper Award @ MWE 202

    Acute increase in goiter size during a normal pregnancy: An exceptional case report

    No full text
    SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore