19 research outputs found

    Analysis of pfhrp2 genetic diversity in Senegal and implications for use of rapid diagnostic tests

    Get PDF
    Background: The Senegalese National Malaria Control Programme has recommended use of rapid diagnostic tests (RDTs) that target the histidine-rich protein 2 (HRP2), specific to Plasmodium falciparum, to diagnose malaria cases. The target antigen has been shown to be polymorphic, which may explain the variability in HRP2-based RDT results reported in field studies. The genetic diversity of the pfhrp2 gene has not been investigated in depth in many African countries. The goal of this study is to determine the extent of polymorphism in pfhrp2 among Senegal, Mali and Uganda parasite populations, and discuss the implications of these findings on the utility of RDTs that are based on HRP2 detection. Methods: Sequencing data from the pfhrp2 locus were used to analyze the genetic diversity of this gene among three populations, with different transmission dynamics and malaria parasite ecologies. Nucleotide diversity (π) and non-synonymous nucleotide diversity (πNS) were studied in the pfhrp2 gene from isolates obtained in Senegal. Amino acid repeat length polymorphisms in the PfHRP2 antigen were characterized and parameters of genetic diversity, such as frequency and correlation between repeats in these populations, were assessed. Results: The diversity survey of the pfhrp2 gene identified 29 SNPs as well as insertion and deletion polymorphisms within a 918 bp region. The Senegal pfhrp2 exhibited a substantial level of diversity [π = 0.00559 and πNS = 0.014111 (πS = 0.0291627)], similar to several polymorphic genes, such as msp1, involved in immune responses, and the gene encoding the SURFIN polymorphic antigen, which are surface exposed parasite proteins. Extensive repeat length polymorphisms in PfHRP2, as well as similar patterns in the number, organization and the type of predicted amino acid repeats were observed among the three populations, characterized by an occurrence of Type 2, Type 4 and Type 7 repeats. Conclusions: These results warrant deeper monitoring of the RDT target antigen diversity and emphasize that development of other essential genes as a target for diagnostic tools is critical

    Allelic diversity of MSP1 and MSP2 repeat loci correlate with levels of malaria endemicity in Senegal and Nigerian populations.

    Get PDF
    BACKGROUND: Characterizing the genetic diversity of malaria parasite populations in different endemic settings (from low to high) could be helpful in determining the effectiveness of malaria interventions. This study compared Plasmodium falciparum parasite population diversity from two sites with low (pre-elimination) and high transmission in Senegal and Nigeria, respectively. METHODS: Parasite genomic DNA was extracted from 187 dried blood spot collected from confirmed uncomplicated P. falciparum malaria infected patients in Senegal (94) and Nigeria (93). Allelic polymorphism at merozoite surface protein 1 (msp1) and merozoite surface protein- 2 (msp2) genes were assessed by nested PCR. RESULTS: The most frequent msp1 and msp2 allelic families are the K1 and IC3D7 allelotypes in both Senegal and Nigeria. Multiplicity of infection (MOI) of greater that 1 and thus complex infections was common in both study sites in Senegal (Thies:1.51/2.53; Kedougou:2.2/2.0 for msp1/2) than in Nigeria (Gbagada: 1.39/1.96; Oredo: 1.35/1.75]). The heterozygosity of msp1 gene was higher in P. falciparum isolates from Senegal (Thies: 0.62; Kedougou: 0.53) than isolates from Nigeria (Gbagada: 0.55; Oredo: 0.50). In Senegal, K1 alleles was associated with heavy than with moderate parasite density. Meanwhile, equal proportions of K1 were observed in both heavy and moderate infection types in Nigeria. The IC3D7 subtype allele of the msp2 family was the most frequent in heavily parasitaemic individuals from both countries than in the moderately infected participants. CONCLUSION: The unexpectedly low genetic diversity of infections high endemic Nigerian setting compared to the low endemic settings in Senegal is suggestive of possible epidemic outbreak in Nigeria

    West Africa International Centers of Excellence for Malaria Research: Drug Resistance Patterns to Artemether-Lumefantrine in Senegal, Mali, and The Gambia.

    Get PDF
    In 2006, artemether-lumefantrine (AL) became the first-line treatment of uncomplicated malaria in Senegal, Mali, and the Gambia. To monitor its efficacy, between August 2011 and November 2014, children with uncomplicated Plasmodium falciparum malaria were treated with AL and followed up for 42 days. A total of 463 subjects were enrolled in three sites (246 in Senegal, 97 in Mali, and 120 in Gambia). No early treatment failure was observed and malaria infection cleared in all patients by day 3. Polymerase chain reaction (PCR)-adjusted adequate clinical and parasitological response (ACPR) was 100% in Mali, and the Gambia, and 98.8% in Senegal. However, without PCR adjustment, ACPR was 89.4% overall; 91.5% in Mali, 98.8% in Senegal, and 64.3% in the Gambia (the lower value in the Gambia attributed to poor compliance of the full antimalarial course). However, pfmdr1 mutations were prevalent in Senegal and a decrease in parasite sensitivity to artesunate and lumefantrine (as measured by ex vivo drug assay) was observed at all sites. Recrudescent parasites did not show Kelch 13 (K13) mutations and AL remains highly efficacious in these west African sites

    Dramatic Changes in Malaria Population Genetic Complexity in Dielmo and Ndiop, Senegal, Revealed Using Genomic Surveillance

    Get PDF
    International audienceDramatic changes in transmission intensity can impact Plasmodium population diversity. Using samples from 2 distant time-points in the Dielmo/Ndiop longitudinal cohorts from Senegal, we applied a molecular barcode tool to detect changes in parasite genotypes and complexity of infection that corresponded to changes in transmission intensity. We observed a striking statistically significant difference in genetic diversity between the 2 parasite populations. Furthermore, we identified a genotype in Dielmo and Ndiop previously observed in Thies, potentially implicating imported malaria. This genetic surveillance study validates the molecular barcode as a tool to assess parasite population diversity changes and track parasite genotypes
    corecore