3 research outputs found

    K+ efflux through postsynaptic NMDA receptors suppresses local astrocytic glutamate uptake

    Get PDF
    Glutamatergic transmission prompts K+ efflux through postsynaptic NMDA receptors. The ensuing hotspot of extracellular K+ elevation depolarizes presynaptic terminal, boosting glutamate release, but whether this also affects glutamate uptake in local astroglia has remained an intriguing question. Here, we find that the pharmacological blockade, or conditional knockout, of postsynaptic NMDA receptors suppresses use-dependent increase in the amplitude and duration of the astrocytic glutamate transporter current (IGluT), whereas blocking astrocytic K+ channels prevents the duration increase only. Glutamate spot-uncaging reveals that astrocyte depolarization, rather than extracellular K+ rises per se, is required to reduce the amplitude and duration of IGluT. Biophysical simulations confirm that local transient elevations of extracellular K+ can inhibit local glutamate uptake in fine astrocytic processes. Optical glutamate sensor imaging and a two-pathway test relate postsynaptic K+ efflux to enhanced extrasynaptic glutamate signaling. Thus, repetitive glutamatergic transmission triggers a feedback loop in which postsynaptic K+ efflux can transiently facilitate presynaptic release while reducing local glutamate uptake

    Super-Resolution Microscopy Opens New Doors to Life at the Nanoscale

    No full text
    Super-resolution fluorescence microscopy holds tremendous potential for discovery in neuroscience. Much of the molecular machinery and anatomic specializations that give rise to the unique and bewildering electrochemical activity of neurons are nanoscale by design, ranging somewhere between 1 nm and 1 μm. It is at this scale where most of the unknown and exciting action is and where cell biologists flock to in their dreams, but it was off limits for light microscopy until recently. While the optical principles of super-resolution microscopy are firmly established by now, the technology continues to advance rapidly in many crucial areas, enhancing its performance and reliability, and making it more accessible and user-friendly, which is sorely needed. Indeed, super-resolution microscopy techniques are nowadays widely used for visualizing immunolabeled protein distributions in fixed or living cells. However, a great potential of super-resolution microscopy for neuroscience lies in shining light on the nanoscale structures and biochemical activities in live-tissue settings, which should be developed and harnessed much more fully. In this review, we will present several vivid examples based on STED and RESOLFT super-resolution microscopy, illustrating the possibilities and challenges of nano-imaging in vivo to pique the interest of tech-developers and neurobiologists alike. We will cover recent technical progress that is facilitating in vivo applications, and share new biological insights into the nanoscale mechanisms of cellular communication between neurons and glia
    corecore