124 research outputs found

    Adiabatic invariants and Mixmaster catastrophes

    Get PDF
    We present a rigorous analysis of the role and uses of the adiabatic invariant in the Mixmaster dynamical system. We propose a new invariant for the global dynamics which in some respects has an improved behaviour over the commonly used one. We illustrate its behaviour in a number of numerical results. We also present a new formulation of the dynamics via Catastrophe Theory. We find that the change from one era to the next corresponds to a fold catastrophe, during the Kasner shifts the potential is an Implicit Function Form whereas, as the anisotropy dissipates, the Mixmaster potential must become a Morse 0--saddle. We compare and contrast our results to many known works on the Mixmaster problem and indicate how extensions could be achieved. Further exploitation of this formulation may lead to a clearer understanding of the global Mixmaster dynamics.Comment: 24 pages, LaTeX, 5 figures (which can be obtained by sending a message to the first author), submitted to Phys.Rev.

    Higher-Derivative Quantum Cosmology

    Full text link
    The quantum cosmology of a higher-derivative derivative gravity theory arising from the heterotic string effective action is reviewed. A new type of Wheeler-DeWitt equation is obtained when the dilaton is coupled to the quadratic curvature terms. Techniques for solving the Wheeler-DeWitt equation with appropriate boundary conditions shall be described, and implications for semiclassical theories of inflationary cosmology will be outlined.Comment: 11 pages TeX. A term has been removed from equation (13

    Essential Constants for Spatially Homogeneous Ricci-flat manifolds of dimension 4+1

    Full text link
    The present work considers (4+1)-dimensional spatially homogeneous vacuum cosmological models. Exact solutions -- some already existing in the literature, and others believed to be new -- are exhibited. Some of them are the most general for the corresponding Lie group with which each homogeneous slice is endowed, and some others are quite general. The characterization ``general'' is given based on the counting of the essential constants, the line-element of each model must contain; indeed, this is the basic contribution of the work. We give two different ways of calculating the number of essential constants for the simply transitive spatially homogeneous (4+1)-dimensional models. The first uses the initial value theorem; the second uses, through Peano's theorem, the so-called time-dependent automorphism inducing diffeomorphismsComment: 26 Pages, 2 Tables, latex2

    Spacelike Singularities and Hidden Symmetries of Gravity

    Get PDF
    We review the intimate connection between (super-)gravity close to a spacelike singularity (the "BKL-limit") and the theory of Lorentzian Kac-Moody algebras. We show that in this limit the gravitational theory can be reformulated in terms of billiard motion in a region of hyperbolic space, revealing that the dynamics is completely determined by a (possibly infinite) sequence of reflections, which are elements of a Lorentzian Coxeter group. Such Coxeter groups are the Weyl groups of infinite-dimensional Kac-Moody algebras, suggesting that these algebras yield symmetries of gravitational theories. Our presentation is aimed to be a self-contained and comprehensive treatment of the subject, with all the relevant mathematical background material introduced and explained in detail. We also review attempts at making the infinite-dimensional symmetries manifest, through the construction of a geodesic sigma model based on a Lorentzian Kac-Moody algebra. An explicit example is provided for the case of the hyperbolic algebra E10, which is conjectured to be an underlying symmetry of M-theory. Illustrations of this conjecture are also discussed in the context of cosmological solutions to eleven-dimensional supergravity.Comment: 228 pages. Typos corrected. References added. Subject index added. Published versio
    • …
    corecore