73 research outputs found

    China is on the track tackling Enteromorpha spp forming green tide

    Get PDF
    Green tide management is supposed to be a long term fight rather than an episode during the 29th Olympic Games for China, since it has been gaining in scale and frequency during the past 3 decades in both marine and estuary environment all over the world. A number of rapid-responding studies including oceanographic comprehensive surveys along the coastline have been conducted during the bloom and post-bloom periods in 2008 by Chinese marine scientists. The preliminary results are as below: (1) phylogenetic analysis indicates that the bloom forming alga forms a clade with representatives of the green seaweed Enteromorpha linza, though, the alga has been identified as E. proliera by means of morphological; (2) the present data suggest that the bloom was originated from south of Yellow Sea, but not the severely affected area near Qingdao City; (3) pathways of reproduction for E. prolifera have approved to be multifarious, including sexual, asexual and vegetative propagation; (4) somatic cells may act as a propagule bank, which is supposed to be a very dangerous transmitting way for its marked movability, adaptability and viability; (5) pyrolysis of the alga showed that three stages appeared during the process, which are dehydration (18–20^o^C), main devolatilization (200–450^o^C) and residual decomposition (450–750^o^C), and activation energy of the alga was determined at 237.23 KJ•mol^-1^. Although the scarce knowlegde on E. prolifera not yet allow a fully understanding of the green tide, some of the results suggests possible directions in further green tide research and management

    Selection of Schizochytrium limacinum mutants based on butanol tolerance

    Get PDF
    Background: Mutation breeding is one of the most important routes to achieving high docosahexaenoic acid (DHA) productivity using Schizochytrium. However, few selection strategies have been reported that aim to generate a high DHA content in Schizochytrium lipids. Results: First, culture temperature altered the butanol tolerance of Schizochytrium limacinum B4D1. Second, S. limacinum E8 was obtained by selecting mutants with high butanol tolerance. This mutant exhibited a 17.97% lower proportion of DHA than the parent strain S. limacinum B4D1. Third, a negative selection strategy was designed in which S. limacinum F6, a mutant with poor butanol tolerance, was obtained. The proportion of DHA in S. limacinum F6 was 11.22% higher than that of parent strain S. limacinum B4D1. Finally, the performances of S. limacinum B4D1, E8 and F6 were compared. These three strains had different fatty acid profiles, but there was no statistical difference in their biomasses and lipid yields. Conclusion: It was feasible to identified the relative DHA content of S. limacinum mutants based on their butanol tolerance

    Gut microbiota and its metabolites in non-small cell lung cancer and brain metastasis: from alteration to potential microbial markers and drug targets

    Get PDF
    BackgroundThe elevated mortality rate associated with non–small-cell lung cancer (NSCLC) is a well-established global concern. Considerable attention has been directed toward exploring the association between gut microbiota and various malignant tumors. We herein investigated the associations between the intestinal microbiome and its metabolites, particularly short-chain fatty acids (SCFAs), in patients with NSCLC at different stages, including early and brain metastasis (BM) stages. The findings aim to offer a fresh perspective on the diagnosis and management of NSCLC.MethodsFecal samples were collected from 115 participants, comprising healthy controls (n = 35) and patients with treatment-naive NSCLC at the early stage (ELC, n = 40) and the BM stage (n = 40). Characterization of the intestinal microbiome and fecal SCFA levels was performed using 16S rRNA gene sequencing and gas chromatography.ResultsThe microbial diversity in patients with NSCLC was found to be less abundant and uniform, particularly in the BM stage. Significant alterations in the community structure of the gut microbiota were observed in patients with NSCLC, with an increase in pathogens in Fusobacteria and Proteobacteria and a decrease in SCFA-producing bacteria in Firmicutes and Actinobacteria, particularly in the BM stage. Meanwhile, microbial communities displayed intricate associations in patients with NSCLC. A biomarker panel (Faecalibacterium, Bifidobacterium, Butyricicoccus, Klebsiella, Streptococcus, and Blautia) successfully distinguished patients in the ELC and BM stages from healthy controls (area under the curve: 0.884). The overall concentration of fecal SCFAs was significantly lower in patients with BM compared to patients with ELC and healthy controls. Subgroup analysis of acetate and butyrate yielded similar results. Moreover, multiple disrupted pathways in the NSCLC group were identified using the Kyoto Encyclopedia of Genes and Genomes annotation, including lipid metabolism and genetic information processing, specifically in the BM stage.ConclusionCompared with healthy controls, distinct host-microbe interactions were evident in different phases of patients with NSCLC. Furthermore, specific forms of the gut microbiome and SCFAs may serve as valuable biomarkers and therapeutic targets in the diagnosis and treatment of NSCLC

    Effect of malate on docosahexaenoic acid production from Schizochytrium sp. B4D1

    Get PDF
    Background: Malate involves in the citrate/malate and transhydrogenase cycles to provide precursors for docosahexaenoic acid (DHA) synthesis. The optimal strategy was investigated for increasing DHA production in Schizochytrium species during fermentation. Results: DHA production increased by 47% and reached 5.51 g/L when 4 g malate/Lwas added during the rapid lipid accumulation stage in shake-flasks culture. Inducing effects ofmalate was further investigated through the analysis of three kinetic parameters, including specific cell growthrate (\u3bc), specific glucose consumption rate (qGlu) andDHA formation rate (qDHA). DHA concentration was enhanced through a novel fed-batch strategy to amaximumvalue of 30.7 g/L, giving a yield of 0.103 g DHA/g glucose and a productivity of 284 mg L-1 h-1. Conclusion: A novel malate feeding strategy was developed that enhanced DHA yield and productivity of Schizochytrium species which may offer a desirable method for industrial applications

    Extracellular Matrix Elasticity Regulates Osteocyte Gap Junction Elongation: Involvement of Paxillin in Intracellular Signal Transduction

    Get PDF
    Background/Aims: Osteocytes can sense and respond to extracellular stimuli, including biochemical factors throughout the cell body, dendritic processes, and cilia bending. However, further exploration is required of osteocyte function in response to substrate stiffness, an important passive mechanical cue at the interface between osteocytes and the extracellular matrix, and the deep bio-mechanism in osteocytes involving mechanosensing of cell behavior. Methods: We fabricated silicon-based elastomer polydimethylsiloxane substrates with different stiffnesses but with the same surface topologies. We then seeded osteocytes onto the substrates to examine their responses. Methodologies used included scanning electron microscopy (SEM) for cell morphology, confocal laser scanning microscopy (CLSM) for protein distribution, western blot for protein levels, co-immunoprecipitation for protein interactions, and quantitative real-time polymerase chain reaction for gene expression. Results: SEM images revealed that substrate stiffness induced a change in osteocyte morphology, and CLSM of F-actin staining revealed that substrate stiffness can alter the cytoskeleton. These results were accompanied by changes in focal adhesion capacity in osteocytes, determined via characterization of vinculin expression and distribution. Furthermore, on the exterior of the cell membrane, fibronectin was altered by substrate stiffness. The fibronectin then induced a change in paxillin on the inner membrane of the cell via protein–protein interaction through transmembrane processing. Paxillin led to changes in connexin 43 via protein–protein binding, thereby influencing osteocyte gap junction elongation. Conclusion: This process -from mechanosensing and mechanotransduction to cell function - not only indicates that the effects of mechanical factors on osteocytes can be directly sensed from the cell body, but also indicates the involvement of paxillin transduction

    Comparative Studies of the Pyrolytic and Kinetic Characteristics of Maize Straw and the Seaweed Ulva pertusa

    Get PDF
    Seaweed has attracted considerable attention as a potential biofuel feedstock. The pyrolytic and kinetic characteristics of maize straw and the seaweed Ulva pertusa were studied and compared using heating rates of 10, 30 and 50°C min−1 under an inert atmosphere. The activation energy, and pre-exponential factors were calculated by the Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS) and Popescu methods. The kinetic mechanism was deduced by the Popescu method. The results indicate that there are three stages to the pyrolysis; dehydration, primary devolatilization and residual decomposition. There were significant differences in average activation energy, thermal stability, final residuals and reaction rates between the two materials. The primary devolatilization stage of U. pertusa can be described by the Avramic-Erofeev equation (n = 3), whereas that of maize straw can be described by the Mampel Power Law (n = 2). The average activation energy of maize straw and U. pertusa were 153.0 and 148.7 KJ mol−1, respectively. The pyrolysis process of U.pertusa would be easier than maize straw. And co-firing of the two biomass may be require less external heat input and improve process stability. There were minor kinetic compensation effects between the pre-exponential factors and the activation energy

    Hydroxyl radical-aided thermal pretreatment of algal biomass for enhanced biodegradability

    Full text link
    BACKGROUND: Algal biomass, known as a potential feedstock for biofuel production, has cell wall structures that differ from terrestrial biomass. The existing methods for processing algae are limited to conventional pretreatments for terrestrial biomass. RESULTS: In this study, we investigated a novel hydroxyl radical-aided approach for pretreating different types of algal biomass. In this process, hydroxyl radicals formed by a Fenton system were employed in combination with heating to alter the crystalline structure and hydrogen bonds of cellulose in the algal biomass. FeSO(4) and H(2)O(2) at low concentrations were employed to initiate the formation of hydroxyl radicals. This method releases trapped polysaccharides in algal cell walls and converts them into fermentable sugars. The effects of temperature, time, and hydroxyl radical concentration were analyzed. The optimal pretreatment condition [100 °C, 30 min, and 5.3 mM H(2)O(2) (determined FeSO(4) concentration of 11.9 mM)] was identified using a central composite design. Complete (100 %) carbohydrate recovery was achieved with some algal biomass without formation of inhibitors such as hydroxymethylfurfural and furfural as by-products. Both microalgal and macroalgal biomasses showed higher enzymatic digestibility of cellulose conversion (>80 %) after the milder pretreatment condition. CONCLUSION: Hydroxyl radical-aided thermal pretreatment was used as a novel method to convert the carbohydrates in the algal cell wall into simple sugars. Overall, this method increased the amount of glucose released from the algal biomass. Overall, enhanced algal biomass digestibility was demonstrated with the proposed pretreatment process. The new pretreatment requires low concentration of chemical solvents and milder temperature conditions, which can prevent the toxic and corrosive effects that typically result from conventional pretreatments. Our data showed that the advantages of the new pretreatment include higher carbohydrate recovery, no inhibitor production, and lower energy consumption. The new pretreatment development mimicking natural system could be useful for biochemical conversion of algal biomass to fuels and chemicals. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13068-015-0372-2) contains supplementary material, which is available to authorized users

    Highly frequent PIK3CA amplification is associated with poor prognosis in gastric cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The phosphoinositide 3-kinase (PI3K)/Akt pathway plays a fundamental role in cell proliferation and survival in human tumorigenesis, including gastric cancer. <it>PIK3CA </it>mutations and amplification are two major causes of overactivation of this pathway in human cancers. However, until this work, there was no sound investigation on the association of <it>PIK3CA </it>mutations and amplification with clinical outcome in gastric cancer, particularly the latter.</p> <p>Methods</p> <p>Using direct sequencing and real-time quantitative PCR, we examined <it>PIK3CA </it>mutations and amplification, and their association with clinicopathological characteristics and clinical outcome of gastric cancer patients.</p> <p>Results</p> <p><it>PIK3CA </it>mutations and amplification were found in 8/113 (7.1%) and 88/131 (67%) gastric cancer patients, respectively. <it>PIK3CA </it>amplification was closely associated with increased phosphorylated Akt (p-Akt) level. No relationship was found between <it>PIK3CA </it>mutations and clinicopathological characteristics and clinical outcome in gastric cancer. <it>PIK3CA </it>amplification was significantly positively associated with cancer-related death. Importantly, Kaplan-Meier survival curves revealed that the patients with <it>PIK3CA </it>amplification had significantly shorter survival times than the patients without <it>PIK3CA </it>amplification.</p> <p>Conclusions</p> <p>Our data showed that <it>PIK3CA </it>mutations were not common, but its amplification was very common in gastric cancer and may be a major mechanism in activating the PI3K/Akt pathway in gastric cancer. Importantly, Kaplan-Meier survival curves revealed that <it>PIK3CA </it>amplification was significantly positively associated with poor survival of gastric cancer patients. Collectively, the PI3K/Akt signaling pathway may be an effective therapeutic target in gastric cancer.</p

    Nutritional Value and Physicochemical Characteristics of Alternative Protein for Meat and Dairy&mdash;A Review

    No full text
    In order to alleviate the pressure on environmental resources faced by meat and dairy production and to satisfy the increasing demands of consumers for food safety and health, alternative proteins have drawn considerable attention in the food industry. However, despite the successive reports of alternative protein food, the processing and application foundation of alternative proteins for meat and dairy is still weak. This paper summarizes the nutritional composition and physicochemical characteristics of meat and dairy alternative proteins from four sources: plant proteins, fungal proteins, algal proteins and insect proteins. The difference between these alternative proteins to animal proteins, the effects of their structural features and environmental conditions on their properties, as well as the corresponding mechanism are compared and discussed. Though fungal proteins, algal proteins and insect proteins have shown some advantages over traditional plant proteins, such as the comparable protein content of insect proteins to meat, the better digestibility of fungal proteins and the better foaming properties of algal proteins, there is still a big gap between alternative proteins and meat and dairy proteins. In addition to needing to provide amino acid composition and digestibility similar to animal proteins, alternative proteins also face challenges such as maintaining good solubility and emulsion properties. Their nutritional and physicochemical properties still need thorough investigation, and for commercial application, it is important to develop and optimize industrial technology in alternative protein separation and modification

    Selection of Schizochytrium limacinum mutants based on butanol tolerance

    Get PDF
    Mutation breeding is one of the most important routes to achieving high docosahexaenoic acid (DHA) productivity using Schizochytrium. However, few selection strategies have been reported that aim to generate a high DHA content in Schizochytrium lipids.First, culture temperature altered the butanol tolerance of Schizochytrium limacinum B4D1. Second, S. limacinum E8 was obtained by selecting mutants with high butanol tolerance. This mutant exhibited a 17.97% lower proportion of DHA than the parent strain S. limacinum B4D1. Third, a negative selection strategy was designed in which S. limacinum F6, a mutant with poor butanol tolerance, was obtained. The proportion of DHA in S. limacinum F6 was 11.22% higher than that of parent strain S. limacinum B4D1. Finally, the performances of S. limacinum B4D1, E8 and F6 were compared. These three strains had different fatty acid profiles, but there was no statistical difference in their biomasses and lipid yields.It was feasible to identified the relative DHA content of S. limacinum mutants based on their butanol tolerance
    corecore