7 research outputs found

    Prehospital risk assessment in patients suspected of non-ST-segment elevation acute coronary syndrome:a systematic review and meta-analysis

    Get PDF
    OBJECTIVE: To review, inventory and compare available diagnostic tools and investigate which tool has the best performance for prehospital risk assessment in patients suspected of non-ST-segment elevation acute coronary syndrome (NSTE-ACS). METHODS: Systematic review and meta-analysis. Medline and Embase were searched up till 1 April 2021. Prospective studies with patients, suspected of NSTE-ACS, presenting in the primary care setting or by emergency medical services (EMS) were included. The most important exclusion criteria were studies including only patients with ST-elevation myocardial infarction and studies before 1995, the pretroponin era. The primary end point was the final hospital discharge diagnosis of NSTE-ACS or major adverse cardiac events (MACE) within 6 weeks. Risk of bias was evaluated by the Quality Assessment of Diagnostic Accuracy Studies Criteria. MAIN OUTCOME AND MEASURES: Sensitivity, specificity and likelihood ratio of findings for risk stratification in patients suspected of NSTE-ACS. RESULTS: In total, 15 prospective studies were included; these studies reflected in total 26 083 patients. No specific variables related to symptoms, physical examination or risk factors were useful in risk stratification for NSTE-ACS diagnosis. The most useful electrocardiographic finding was ST-segment depression (LR+3.85 (95% CI 2.58 to 5.76)). Point-of-care troponin was found to be a strong predictor for NSTE-ACS in primary care (LR+14.16 (95% CI 4.28 to 46.90) and EMS setting (LR+6.16 (95% CI 5.02 to 7.57)). Combined risk scores were the best for risk assessment in an NSTE-ACS. From the combined risk scores that can be used immediately in a prehospital setting, the PreHEART score, a validated combined risk score for prehospital use, derived from the HEART score (History, ECG, Age, Risk factors, Troponin), was most useful for risk stratification in patients with NSTE-ACS (LR+8.19 (95% CI 5.47 to 12.26)) and for identifying patients without ACS (LR-0.05 (95% CI 0.02 to 0.15)). DISCUSSION: Important study limitations were verification bias and heterogeneity between studies. In the prehospital setting, several diagnostic tools have been reported which could improve risk stratification, triage and early treatment in patients suspected for NSTE-ACS. On-site assessment of troponin and combined risk scores derived from the HEART score are strong predictors. These results support further studies to investigate the impact of these new tools on logistics and clinical outcome. FUNDING: This study is funded by ZonMw, the Dutch Organisation for Health Research and Development. TRIAL REGISTRATION NUMBER: This meta-analysis was published for registration in PROSPERO prior to starting (CRD York, CRD42021254122).</p

    Rationale and design of SAVI-AoS:A physiologic study of patients with symptomatic moderate aortic valve stenosis and preserved left ventricular ejection fraction

    Get PDF
    Background: Moderate aortic valve stenosis occurs twice as often as severe aortic stenosis (AS) and carries a similarly poor prognosis. Current European and American guidelines offer limited insight into moderate AS (MAS) patients with unexplained symptoms. Measuring valve physiology at rest while most patients experience symptoms during exertion might represent a conceptual limitation in the current grading of AS severity. The stress aortic valve index (SAVI) may delineate hemodynamically significant AS among patients with MAS. Objectives: To investigate the diagnostic value of SAVI in symptomatic MAS patients with normal left ventricular ejection fraction (LVEF ≄ 50%): aortic valve area (AVA) > 1 cm2 plus either mean valve gradient (MG) 15–39 mmHg or maximal aortic valve velocity (AOV max) 2.5–3.9 m/s. Short-term objectives include associations with symptom burden, functional capacity, and cardiac biomarkers. Long-term objectives include clinical outcomes. Methods and results: Multicenter, non-blinded, observational cohort. AS severity will be graded invasively (aortic valve pressure measurements with dobutamine stress testing for SAVI) and non-invasively (echocardiography during dobutamine and exercise stress). Computed tomography (CT) of the aortic valve will be scored for calcium, and hemodynamics simulated using computational fluid dynamics. Cardiac biomarkers and functional parameters will be serially monitored. The primary objective is to see how SAVI and conventional measures (MG, AVA and Vmax) correlate with clinical parameters (quality of life survey, 6-minute walk test [6MWT], and biomarkers). Conclusions: The SAVI-AoS study will extensively evaluate patients with unexplained, symptomatic MAS to determine any added value of SAVI versus traditional, resting valve parameters

    Recovery of Absolute Coronary Blood Flow and Microvascular Resistance After Chronic Total Occlusion Percutaneous Coronary Intervention: An Exploratory Study

    Get PDF
    Background: This study aimed to investigate longitudinal physiological changes in the recanalized coronary chronic total occlusion (CTO) vessel and its dependent myocardium after successful percutaneous coronary intervention (PCI). Methods and Results: In this pilot study, 25 patients scheduled for elective CTO PCI with viable myocardium and angiographically visible collaterals were included. Absolute coronary blood flow and absolute microvascular resistance were measured invasively using continuous thermodilution. Measurements were performed immediately after successful CTO PCI and at short‐term follow‐up. In a subgroup of patients, physiological measurements were performed at the predominant donor vessel before CTO PCI, immediately afterwards, and at follow‐up. Absolute coronary blood flow in the recanalized CTO artery increased from 148±53 mL/min immediately after PCI to 221±77 mL/min at follow‐up (P<0.001). In agreement, absolute resistance in the myocardial territory perfused by the CTO artery, decreased from 545±255 Wood units immediately after the procedure to 387±128 Wood units at follow‐up (P=0.014). There were no significant changes in the absolute coronary blood flow and resistance in the predominant donor between baseline and follow‐up. Positive remodeling of the distal CTO vessel with an increase in lumen diameter was observed. Conclusions: After successful CTO PCI, blood flow in the recanalized artery and microvascular function of the dependent myocardium are not immediately normal but recover over time

    Hypothermia for Cardioprotection in Patients with St-Elevation Myocardial Infarction: Do Not Give It the Cold Shoulder Yet!

    No full text
    The timely revascularization of an occluded coronary artery is the cornerstone of treatment in patients with ST-elevation myocardial infarction (STEMI). As essential as this treatment is, it can also cause additional damage to cardiomyocytes that were still viable before reperfusion, increasing infarct size. This has been termed "myocardial reperfusion injury". To date, there is still no effective treatment for myocardial reperfusion injury in patients with STEMI. While numerous attempts have been made to overcome this hurdle with various experimental therapies, the common denominator of these therapies is that, although they often work in the preclinical setting, they fail to demonstrate the same results in human trials. Hypothermia is an example of such a therapy. Although promising results were derived from experimental studies, multiple randomized controlled trials failed to do the same. This review includes a discussion of hypothermia as a potential treatment for myocardial reperfusion injury, including lessons learned from previous (negative) trials, advanced techniques and materials in current hypothermic treatment, and the possible future of hypothermia for cardioprotection in patients with STEMI

    Hypothermia for Cardioprotection in Patients with St-Elevation Myocardial Infarction: Do Not Give It the Cold Shoulder Yet!

    Get PDF
    The timely revascularization of an occluded coronary artery is the cornerstone of treatment in patients with ST-elevation myocardial infarction (STEMI). As essential as this treatment is, it can also cause additional damage to cardiomyocytes that were still viable before reperfusion, increasing infarct size. This has been termed &ldquo;myocardial reperfusion injury&rdquo;. To date, there is still no effective treatment for myocardial reperfusion injury in patients with STEMI. While numerous attempts have been made to overcome this hurdle with various experimental therapies, the common denominator of these therapies is that, although they often work in the preclinical setting, they fail to demonstrate the same results in human trials. Hypothermia is an example of such a therapy. Although promising results were derived from experimental studies, multiple randomized controlled trials failed to do the same. This review includes a discussion of hypothermia as a potential treatment for myocardial reperfusion injury, including lessons learned from previous (negative) trials, advanced techniques and materials in current hypothermic treatment, and the possible future of hypothermia for cardioprotection in patients with STEMI

    Ultrastructural Characteristics of Myocardial Reperfusion Injury and Effect of Selective Intracoronary Hypothermia: An Observational Study in Isolated Beating Porcine Hearts

    Get PDF
    In acute myocardial infarction (AMI), myocardial reperfusion injury may undo part of the recovery after revascularization of the occluded coronary artery. Selective intracoronary hypothermia is a novel method aimed at reducing myocardial reperfusion injury, but its presumed protective effects in AMI still await further elucidation. This proof-of-concept study assesses the potential protective effects of selective intracoronary hypothermia in an ex-vivo, isolated beating heart model of AMI. In four isolated Langendorff perfused beating pig hearts, an anterior wall myocardial infarction was created by inflating a balloon in the mid segment of the left anterior descending (LAD) artery. After one hour, two hearts were treated with selective intracoronary hypothermia followed by normal reperfusion (cooled hearts). In the other two hearts, the balloon was deflated after one hour, allowing normal reperfusion (control hearts). Biopsies for histologic and electron microscopic evaluation were taken from the myocardium at risk at different time points: before occlusion (t = BO); 5 minutes before reperfusion (t = BR); and 10 minutes after reperfusion (t = AR). Electron microscopic analysis was performed to evaluate the condition of the mitochondria. Histological analyses included evaluation of sarcomeric collapse and intramyocardial hematoma. Electron microscopic analysis revealed intact mitochondria in the hypothermia treated hearts compared to the control hearts where mitochondria were more frequently damaged. No differences in the prespecified histological parameters were observed between cooled and control hearts at t = AR. In the isolated beating porcine heart model of AMI, reperfusion was associated with additional myocardial injury beyond ischemic injury. Selective intracoronary hypothermia preserved mitochondrial integrity compared to nontreated controls

    Historische PĂ€dagogik: die Geschichte der Erziehung und Erziehungswissenschaft

    No full text
    corecore