563 research outputs found
Fun with Fonts: Algorithmic Typography
Over the past decade, we have designed six typefaces based on mathematical
theorems and open problems, specifically computational geometry. These
typefaces expose the general public in a unique way to intriguing results and
hard problems in hinged dissections, geometric tours, origami design,
computer-aided glass design, physical simulation, and protein folding. In
particular, most of these typefaces include puzzle fonts, where reading the
intended message requires solving a series of puzzles which illustrate the
challenge of the underlying algorithmic problem.Comment: 14 pages, 12 figures. Revised paper with new glass cane font.
Original version in Proceedings of the 7th International Conference on Fun
with Algorithm
Data Sketches for Disaggregated Subset Sum and Frequent Item Estimation
We introduce and study a new data sketch for processing massive datasets. It
addresses two common problems: 1) computing a sum given arbitrary filter
conditions and 2) identifying the frequent items or heavy hitters in a data
set. For the former, the sketch provides unbiased estimates with state of the
art accuracy. It handles the challenging scenario when the data is
disaggregated so that computing the per unit metric of interest requires an
expensive aggregation. For example, the metric of interest may be total clicks
per user while the raw data is a click stream with multiple rows per user. Thus
the sketch is suitable for use in a wide range of applications including
computing historical click through rates for ad prediction, reporting user
metrics from event streams, and measuring network traffic for IP flows.
We prove and empirically show the sketch has good properties for both the
disaggregated subset sum estimation and frequent item problems. On i.i.d. data,
it not only picks out the frequent items but gives strongly consistent
estimates for the proportion of each frequent item. The resulting sketch
asymptotically draws a probability proportional to size sample that is optimal
for estimating sums over the data. For non i.i.d. data, we show that it
typically does much better than random sampling for the frequent item problem
and never does worse. For subset sum estimation, we show that even for
pathological sequences, the variance is close to that of an optimal sampling
design. Empirically, despite the disadvantage of operating on disaggregated
data, our method matches or bests priority sampling, a state of the art method
for pre-aggregated data and performs orders of magnitude better on skewed data
compared to uniform sampling. We propose extensions to the sketch that allow it
to be used in combining multiple data sets, in distributed systems, and for
time decayed aggregation
Verification in Staged Tile Self-Assembly
We prove the unique assembly and unique shape verification problems,
benchmark measures of self-assembly model power, are
-hard and contained in (and in
for staged systems with stages). En route,
we prove that unique shape verification problem in the 2HAM is
-complete.Comment: An abstract version will appear in the proceedings of UCNC 201
A Pseudopolynomial Algorithm for Alexandrov's Theorem
Alexandrov's Theorem states that every metric with the global topology and
local geometry required of a convex polyhedron is in fact the intrinsic metric
of a unique convex polyhedron. Recent work by Bobenko and Izmestiev describes a
differential equation whose solution leads to the polyhedron corresponding to a
given metric. We describe an algorithm based on this differential equation to
compute the polyhedron to arbitrary precision given the metric, and prove a
pseudopolynomial bound on its running time. Along the way, we develop
pseudopolynomial algorithms for computing shortest paths and weighted Delaunay
triangulations on a polyhedral surface, even when the surface edges are not
shortest paths.Comment: 25 pages; new Delaunay triangulation algorithm, minor other changes;
an abbreviated v2 was at WADS 200
Optimality program in segment and string graphs
Planar graphs are known to allow subexponential algorithms running in time
or for most of the paradigmatic
problems, while the brute-force time is very likely to be
asymptotically best on general graphs. Intrigued by an algorithm packing curves
in by Fox and Pach [SODA'11], we investigate which
problems have subexponential algorithms on the intersection graphs of curves
(string graphs) or segments (segment intersection graphs) and which problems
have no such algorithms under the ETH (Exponential Time Hypothesis). Among our
results, we show that, quite surprisingly, 3-Coloring can also be solved in
time on string graphs while an algorithm running
in time for 4-Coloring even on axis-parallel segments (of unbounded
length) would disprove the ETH. For 4-Coloring of unit segments, we show a
weaker ETH lower bound of which exploits the celebrated
Erd\H{o}s-Szekeres theorem. The subexponential running time also carries over
to Min Feedback Vertex Set but not to Min Dominating Set and Min Independent
Dominating Set.Comment: 19 pages, 15 figure
An O(n^3)-Time Algorithm for Tree Edit Distance
The {\em edit distance} between two ordered trees with vertex labels is the
minimum cost of transforming one tree into the other by a sequence of
elementary operations consisting of deleting and relabeling existing nodes, as
well as inserting new nodes. In this paper, we present a worst-case
-time algorithm for this problem, improving the previous best
-time algorithm~\cite{Klein}. Our result requires a novel
adaptive strategy for deciding how a dynamic program divides into subproblems
(which is interesting in its own right), together with a deeper understanding
of the previous algorithms for the problem. We also prove the optimality of our
algorithm among the family of \emph{decomposition strategy} algorithms--which
also includes the previous fastest algorithms--by tightening the known lower
bound of ~\cite{Touzet} to , matching our
algorithm's running time. Furthermore, we obtain matching upper and lower
bounds of when the two trees have
different sizes and~, where .Comment: 10 pages, 5 figures, 5 .tex files where TED.tex is the main on
Locked and Unlocked Polygonal Chains in 3D
In this paper, we study movements of simple polygonal chains in 3D. We say
that an open, simple polygonal chain can be straightened if it can be
continuously reconfigured to a straight sequence of segments in such a manner
that both the length of each link and the simplicity of the chain are
maintained throughout the movement. The analogous concept for closed chains is
convexification: reconfiguration to a planar convex polygon. Chains that cannot
be straightened or convexified are called locked. While there are open chains
in 3D that are locked, we show that if an open chain has a simple orthogonal
projection onto some plane, it can be straightened. For closed chains, we show
that there are unknotted but locked closed chains, and we provide an algorithm
for convexifying a planar simple polygon in 3D with a polynomial number of
moves.Comment: To appear in Proc. 10th ACM-SIAM Sympos. Discrete Algorithms, Jan.
199
When Can You Fold a Map?
We explore the following problem: given a collection of creases on a piece of
paper, each assigned a folding direction of mountain or valley, is there a flat
folding by a sequence of simple folds? There are several models of simple
folds; the simplest one-layer simple fold rotates a portion of paper about a
crease in the paper by +-180 degrees. We first consider the analogous questions
in one dimension lower -- bending a segment into a flat object -- which lead to
interesting problems on strings. We develop efficient algorithms for the
recognition of simply foldable 1D crease patterns, and reconstruction of a
sequence of simple folds. Indeed, we prove that a 1D crease pattern is
flat-foldable by any means precisely if it is by a sequence of one-layer simple
folds.
Next we explore simple foldability in two dimensions, and find a surprising
contrast: ``map'' folding and variants are polynomial, but slight
generalizations are NP-complete. Specifically, we develop a linear-time
algorithm for deciding foldability of an orthogonal crease pattern on a
rectangular piece of paper, and prove that it is (weakly) NP-complete to decide
foldability of (1) an orthogonal crease pattern on a orthogonal piece of paper,
(2) a crease pattern of axis-parallel and diagonal (45-degree) creases on a
square piece of paper, and (3) crease patterns without a mountain/valley
assignment.Comment: 24 pages, 19 figures. Version 3 includes several improvements thanks
to referees, including formal definitions of simple folds, more figures,
table summarizing results, new open problems, and additional reference
Unfolding Orthogonal Polyhedra with Quadratic Refinement: The Delta-Unfolding Algorithm
We show that every orthogonal polyhedron homeomorphic to a sphere can be
unfolded without overlap while using only polynomially many (orthogonal) cuts.
By contrast, the best previous such result used exponentially many cuts. More
precisely, given an orthogonal polyhedron with n vertices, the algorithm cuts
the polyhedron only where it is met by the grid of coordinate planes passing
through the vertices, together with Theta(n^2) additional coordinate planes
between every two such grid planes.Comment: 15 pages, 10 figure
Self-Assembly of Arbitrary Shapes Using RNAse Enzymes: Meeting the Kolmogorov Bound with Small Scale Factor (extended abstract)
We consider a model of algorithmic self-assembly of geometric shapes out of
square Wang tiles studied in SODA 2010, in which there are two types of tiles
(e.g., constructed out of DNA and RNA material) and one operation that destroys
all tiles of a particular type (e.g., an RNAse enzyme destroys all RNA tiles).
We show that a single use of this destruction operation enables much more
efficient construction of arbitrary shapes. In particular, an arbitrary shape
can be constructed using an asymptotically optimal number of distinct tile
types (related to the shape's Kolmogorov complexity), after scaling the shape
by only a logarithmic factor. By contrast, without the destruction operation,
the best such result has a scale factor at least linear in the size of the
shape, and is connected only by a spanning tree of the scaled tiles. We also
characterize a large collection of shapes that can be constructed efficiently
without any scaling
- …