283 research outputs found

    A Monitoring Campaign for Luhman 16AB. I. Detection of Resolved Near-Infrared Spectroscopic Variability

    Get PDF
    [abbreviated] We report resolved near-infrared spectroscopic monitoring of the nearby L dwarf/T dwarf binary WISE J104915.57-531906.1AB (Luhman 16AB), as part of a broader campaign to characterize the spectral energy distribution and temporal variability of this system. A continuous 45-minute sequence of low-resolution IRTF/SpeX data spanning 0.8-2.4 micron were obtained, concurrent with combined-light optical photometry with ESO/TRAPPIST. Our spectral observations confirm the flux reversal of this binary, and we detect a wavelength-dependent decline in the relative spectral fluxes of the two components coincident with a decline in the combined-light optical brightness of the system over the course of the observation. These data are successfully modeled as a combination of brightness and color variability in the T0.5 Luhman 16B, consistent cloud variations; and no significant variability in L7.5 Luhman 16A. We estimate a peak-to-peak amplitude of 13.5% at 1.25 micron over the full lightcurve. Using a two-spot brightness temperature model, we infer an average cloud covering fraction of ~30-55% for Luhman 16B, varying by 15-30% over a rotation period. A Rhines scale interpretation for the size of the variable features explains an apparent correlation between period and amplitude for three highly variable T dwarfs, and predicts relatively fast winds (1-3 km/s) for Luhman 16B consistent with lightcurve evolution on an advective time scale (1-3 rotation periods). Our observations support the model of a patchy disruption of the mineral cloud layer as a universal feature of the L dwarf/T dwarf transition.Comment: 11 pages, 7 figures; accepted for publication in Astrophysical Journa

    Ground-based follow-up observations of TRAPPIST-1 transits in the near-infrared

    Get PDF
    The TRAPPIST-1 planetary system is a favorable target for the atmospheric characterization of temperate earth-sized exoplanets by means of transmission spectroscopy with the forthcoming James Webb Space Telescope (JWST). A possible obstacle to this technique could come from the photospheric heterogeneity of the host star that could affect planetary signatures in the transit transmission spectra. To constrain further this possibility, we gathered an extensive photometric data set of 25 TRAPPIST-1 transits observed in the near-IR J band (1.2 μ\mum) with the UKIRT and the AAT, and in the NB2090 band (2.1 μ\mum) with the VLT during the period 2015-2018. In our analysis of these data, we used a special strategy aiming to ensure uniformity in our measurements and robustness in our conclusions. We reach a photometric precision of 0.003\sim0.003 (RMS of the residuals), and we detect no significant temporal variations of transit depths of TRAPPIST-1 b, c, e, and g over the period of three years. The few transit depths measured for planets d and f hint towards some level of variability, but more measurements will be required for confirmation. Our depth measurements for planets b and c disagree with the stellar contamination spectra originating from the possible existence of bright spots of temperature 4500 K. We report updated transmission spectra for the six inner planets of the system which are globally flat for planets b and g and some structures are seen for planets c, d, e, and f.Comment: accepted for publication in MNRA

    WASP-157b, a Transiting Hot Jupiter Observed with K2

    Get PDF
    We announce the discovery of the transiting hot Jupiter WASP-157b in a 3.95-d orbit around a V = 12.9 G2 main-sequence star. This moderately inflated planet has a Saturn-like density with a mass of 0.57±0.100.57 \pm 0.10 MJup_{\rm Jup} and a radius of 1.06±0.051.06 \pm 0.05 RJup_{\rm Jup}. We do not detect any rotational or phase-curve modulations, nor the secondary eclipse, with conservative semi-amplitude upper limits of 250 and 20 ppm, respectively.Comment: 6 pages, 5 figures and 4 tables. Accepted for publication in PAS

    WASP-120b, WASP-122b and WASP-123b: Three newly discovered planets from the WASP-South survey

    Get PDF
    We present the discovery by the WASP-South survey of three planets transiting moderately bright stars (V ~ 11). WASP-120b is a massive (5.0MJup) planet in a 3.6-day orbit that we find likely to be eccentric (e = 0.059+0.025-0.018) around an F5 star. WASP-122b is a hot-Jupiter (1.37MJup, 1.79RJup) in a 1.7-day orbit about a G4 star. Our predicted transit depth variation cause by the atmosphere of WASP-122b suggests it is well suited to characterisation. WASP-123b is a hot-Jupiter (0.92MJup, 1.33RJup) in a 3.0-day orbit around an old (~ 7 Gyr) G5 star.Comment: 15 pages, 10 figures, 5 table

    WASP-117b: a 10-day-period Saturn in an eccentric and misaligned orbit

    Get PDF
    We report the discovery of WASP-117b, the first planet with a period beyond 10 days found by the WASP survey. The planet has a mass of Mp=0.2755±0.0089MJM_p= 0.2755 \pm 0.0089 \, M_{J}, a radius of Rp=1.0210.065+0.076RJR_p= 1.021_{-0.065}^{+0.076}\, R_{J} and is in an eccentric (e=0.302±0.023 e= 0.302 \pm 0.023 ), 10.02165±0.00055 10.02165 \pm 0.00055 ~d orbit around a main-sequence F9 star. The host star's brightness (V=10.15 mag) makes WASP-117 a good target for follow-up observations, and with a periastron planetary equilibrium temperature of Teq=122539+36T_{eq}= 1225_{-39}^{+36} K and a low planetary mean density (ρp=0.2590.048+0.054ρJ\rho_p= 0.259_{-0.048}^{+0.054} \, \rho_{J}) it is one of the best targets for transmission spectroscopy among planets with periods around 10 days. From a measurement of the Rossiter-McLaughlin effect, we infer a projected angle between the planetary orbit and stellar spin axes of β=44±11\beta = -44 \pm 11 deg, and we further derive an orbital obliquity of ψ=69.64.1+4.7\psi = 69.6 ^{+4.7}_{-4.1} deg. Owing to the large orbital separation, tidal forces causing orbital circularization and realignment of the planetary orbit with the stellar plane are weak, having had little impact on the planetary orbit over the system lifetime. WASP-117b joins a small sample of transiting giant planets with well characterized orbits at periods above ~8 days.Comment: To appear in A&

    A low-density hot Jupiter in a near-aligned, 4.5-day orbit around a VV = 10.8, F5V star

    Full text link
    We report the independent discovery and characterisation of a hot Jupiter in a 4.5-d, transiting orbit around the star TYC 7282-1298-1 (VV = 10.8, F5V). The planet has been pursued by the NGTS team as NGTS-2b and by ourselves as WASP-179b. We characterised the system using a combination of photometry from WASP-South and TRAPPIST-South, and spectra from CORALIE (around the orbit) and HARPS (through the transit). We find the planet's orbit to be nearly aligned with its star's spin. From a detection of the Rossiter-McLaughlin effect, we measure a projected stellar obliquity of λ=19±6\lambda = -19 \pm 6^\circ. From line-profile tomography of the same spectra, we measure λ=11±5\lambda = -11 \pm 5^\circ. We find the planet to have a low density (MPM_{\rm P} = 0.67 ±\pm 0.09 MJupM_{\rm Jup}, RPR_{\rm P} = 1.54 ±\pm 0.06 RJupR_{\rm Jup}), which, along with its moderately bright host star, makes it a good target for transmission spectroscopy. We find a lower stellar mass (MM_* = 1.30±0.071.30 \pm 0.07 MM_\odot) than reported by the NGTS team (MM_* = 1.64±0.211.64 \pm 0.21 MM_\odot), though the difference is only 1.51.5 σ\sigma.Comment: Submitted to AJ. 9 pages, 6 figures, 5 table
    corecore