24 research outputs found

    Humoral and cellular immune correlates of protection against COVID-19 in kidney transplant recipients.

    Full text link
    peer reviewedAs solid organ transplant recipients are at high risk of severe COVID-19 and respond poorly to primary SARS-CoV-2 mRNA vaccination, they have been prioritized for booster vaccination. However, an immunological correlate of protection has not been identified in this vulnerable population. We conducted a prospective monocentric cohort study of 65 kidney transplant recipients who received 3 doses of BNT162b2 mRNA vaccine. Associations among breakthrough infection (BTI), vaccine responses, and patient characteristics were explored in 54 patients. Symptomatic COVID-19 was diagnosed in 32% of kidney transplant recipients during a period of 6 months after booster vaccination. During this period, SARS-CoV-2 delta and omicron were the dominant variants in the general population. Univariate Analyses identified the avidity of SARS-CoV-2 receptor binding domain binding IgG, neutralizing antibodies, and SARS-CoV-2 S2-specific interferon gamma responses as correlates of protection against BTI. No demographic or clinical parameter correlated with the risk of BTI. In multivariate analysis, the risk of BTI was best predicted by neutralizing antibody and S2-specific interferon gamma responses. In conclusion, T cell responses may help compensate for the suboptimal antibody response to booster vaccination in kidney transplant recipients. Further studies are needed to confirm these findings

    Hybrid Immunity Overcomes Defective Immune Response to COVID-19 Vaccination in Kidney Transplant Recipients.

    Full text link
    peer reviewed[en] INTRODUCTION: Comorbidities and immunosuppressive therapies are associated with reduced immune responses to primary COVID-19 mRNA vaccination in kidney transplant recipients (KTRs). In healthy individuals, prior SARS-COV-2 infection is associated with increased vaccine responses, a phenotype called hybrid immunity. In this study, we explored the potential influence of immune suppression on hybrid immunity in KTRs. METHODS: Eighty-two KTRs, including 59 SARS-CoV-2-naïve (naïve KTRs [N-KTRs]) and 23 SARS-CoV-2-experienced (experienced KTRs [E-KTRs]) patients, were prospectively studied and compared to 106 healthy controls (HCs), including 40 SARS-CoV-2-naïve (N-HCs) and 66 SARS-CoV-2-experienced (E-HCs) subjects. Polyfunctional antibody and T cell responses were measured following 2 doses of BNT162b2 mRNA vaccine. Associations between vaccine responses and clinical characteristics were studied by univariate and multivariate analyses. RESULTS: In naïve KTRs, vaccine responses were markedly lower than in HCs and were correlated with older age, more recent transplantation, kidney retransplantation after graft failure, arterial hypertension, and treatment with mycophenolate mofetil (MMF). In contrast, vaccine responses of E-KTRs were similar to those of HCs and were associated with time between transplantation and vaccination, but not with the other risk factors associated with low vaccine responses in naïve KTRs. CONCLUSION: In conclusion, hybrid immunity overcomes immune suppression and provides potent humoral and cellular immunity to SARS-CoV-2 in KTRs

    Third dose of COVID-19 mRNA vaccine closes the gap in immune response between naïve nursing home residents and healthy adults.

    Full text link
    peer reviewed[en] BACKGROUND: Nursing home residents, a frail and old population group, respond poorly to primary mRNA COVID-19 vaccination. A third dose has been shown to boost protection against severe disease and death in this immunosenescent population, but limited data is available on the immune responses it induces. METHODS: In this observational cohort study, peak humoral and cellular immune responses were compared 28 days after the second and third doses of the BNT162b2 mRNA COVID-19 vaccine in residents and staff members of two Belgian nursing homes. Only individuals without evidence of previous SARS-CoV-2 infection at third dose administration were included in the study. In addition, an extended cohort of residents and staff members was tested for immune responses to a third vaccine dose and was monitored for vaccine breakthrough infections in the following six months. The trial is registered on ClinicalTrials.gov (NCT04527614). FINDINGS: All included residents (n = 85) and staff members (n = 88) were SARS-CoV-2 infection naïve at third dose administration. Historical blood samples from 28 days post second dose were available from 42 residents and 42 staff members. Magnitude and quality of humoral and cellular immune responses were strongly boosted in residents post third compared to post second dose. Increases were less pronounced in staff members than in residents. At 28 days post third dose, differences between residents and staff had become mostly insignificant. Humoral, but not cellular, responses induced by a third dose were predictive of subsequent incidence of vaccine breakthrough infection in the six months following vaccination. INTERPRETATION: These data show that a third dose of mRNA COVID-19 vaccine largely closes the gap in humoral and cellular immune response observed after primary vaccination between NH residents and staff members but suggest that further boosting might be needed to achieve optimal protection against variants of concern in this vulnerable population group

    Sequential development of ANCA‐associated vasculitis and anti‐GBM disease: A report of two cases

    No full text
    Abstract In case of AAV with kidney involvement, physicians should explore anti‐GBM antibodies and be aware of the possible sequential development of AAV, especially with MPO‐ANCA, and anti‐GBM glomerulonephritis. This sequential disease history is associated with a poor renal outcome, highlighting the need for urgent diagnosis and management

    Monocentric, Retrospective Study on Infectious Complications within One Year after Solid-Organ Transplantation at a Belgian University Hospital.

    No full text
    The epidemiology, diagnostic methods and management of infectious complications after solid-organ transplantation (SOT) are evolving. The aim of our study is to describe current infectious complications in the year following SOT and risk factors for their development and outcome. We conducted a retrospective study in adult SOT recipients in a Belgian university hospital between 2018 and 2019. We gathered demographic characteristics, comorbidities leading to transplantation, clinical, microbiological, surgery-specific and therapeutic data concerning infectious episodes, and survival status up to one year post-transplantation. Two-hundred-and-thirty-one SOT recipients were included (90 kidneys, 79 livers, 35 lungs, 19 hearts and 8 multiple organs). We observed 381 infections in 143 (62%) patients, due to bacteria (235 (62%)), viruses (67 (18%)), and fungi (32 (8%)). Patients presented a median of two (1-5) infections, and the first infection occurred during the first six months. Nineteen (8%) patients died, eleven (58%) due to infectious causes. Protective factors identified against developing infection were obesity [OR [IC]: 0.41 [0.19-0.89]; p = 0.025] and liver transplantation [OR [IC]: 0.21 [0.07-0.66]; p = 0.007]. Risk factors identified for developing an infection were lung transplantation [OR [IC]: 6.80 [1.17-39.36]; p = 0.032], CMV mismatch [OR [IC]: 3.53 [1.45-8.64]; p = 0.006] and neutropenia [OR [IC]: 2.87 [1.27-6.47]; p = 0.011]. Risk factors identified for death were inadequate cytomegalovirus prophylaxis, infection severity and absence of pneumococcal vaccination. Post-transplant infections were common. Addressing modifiable risk factors is crucial, such as pneumococcal vaccination.info:eu-repo/semantics/publishe

    Insights From Early Clinical Trials Assessing Response to mRNA SARS-CoV-2 Vaccination in Immunocompromised Patients

    No full text
    It is critical to protect immunocompromised patients against COVID-19 with effective SARS-CoV-2 vaccination as they have an increased risk of developing severe disease. This is challenging, however, since effective mRNA vaccination requires the successful cooperation of several components of the innate and adaptive immune systems, both of which can be severely affected/deficient in immunocompromised people. In this article, we first review current knowledge on the immunobiology of SARS-COV-2 mRNA vaccination in animal models and in healthy humans. Next, we summarize data from early trials of SARS-COV-2 mRNA vaccination in patients with secondary or primary immunodeficiency. These early clinical trials identified common predictors of lower response to the vaccine such as anti-CD19, anti-CD20 or anti-CD38 therapies, low (naive) CD4+ T-cell counts, genetic or therapeutic Bruton tyrosine kinase deficiency, treatment with antimetabolites, CTLA4 agonists or JAK inhibitors, and vaccination with BNT162b2 versus mRNA1273 vaccine. Finally, we review the first data on third dose mRNA vaccine administration in immunocompromised patients and discuss recent strategies of temporarily holding/pausing immunosuppressive medication during vaccination.SCOPUS: re.jinfo:eu-repo/semantics/publishe

    Insights from early clinical trials assessing response to mRNA SARS-CoV-2 vaccination in immunocompromised patients

    No full text
    It is critical to protect immunocompromised patients against COVID-19 with effective SARS-CoV-2 vaccination as they have an increased risk of developing severe disease. This is challenging, however, since effective mRNA vaccination requires the successful cooperation of several components of the innate and adaptive immune systems, both of which can be severely affected/deficient in immunocompromised people. In this article, we first review current knowledge on the immunobiology of SARS-COV-2 mRNA vaccination in animal models and in healthy humans. Next, we summarize data from early trials of SARS-COV-2 mRNA vaccination in patients with secondary or primary immunodeficiency. These early clinical trials identified common predictors of lower response to the vaccine such as anti-CD19, anti-CD20 or anti-CD38 therapies, low (naive) CD4(+) T-cell counts, genetic or therapeutic Bruton tyrosine kinase deficiency, treatment with antimetabolites, CTLA4 agonists or JAK inhibitors, and vaccination with BNT162b2 versus mRNA1273 vaccine. Finally, we review the first data on third dose mRNA vaccine administration in immunocompromised patients and discuss recent strategies of temporarily holding/pausing immunosuppressive medication during vaccination
    corecore