38 research outputs found

    Functional and mechanistic approaches to improve neurotoxicity predictions

    No full text
    Current assessments of neurotoxicity (NT) and developmental NT (DNT) using animal models lack throughput and predictivity. These central drawbacks need to be overcome by the development of functional and mechanistic in vitro methods that increase human relevance and throughput for safety assessment.Paper #1 demonstrates the development of an in vitro assay that specifically detects neurite damage. This test, called NeuriTox test, is based on the conditionally immortalized human dopaminergic neuronal cell line LUHMES. The NeuriTox test was converted to a high-throughput version. In a proof-of-concept study, a chemical library containing 80 substances was screened. Test performance parameters were quantified, a prediction model and standard operating procedures (SOP) were developed and submitted to DB-ALM, the database for alternative test methods at the European Centre for Validation of Alternative Methods. Further on, the test was evaluated, together with the U.S. Environmental Protection Agency (US EPA), as one of the best currently available in vitro assays for neurotoxicity assessment.Paper #2 focused on the metabolic background of the LUHMES cells used for the NeuriTox test. We quantified the rearrangements that occur between the immature proliferative and the mature, differentiated stage. By applying transcriptomics, proteomics, metabolomics and fluxomics, we discovered multiple rearrangements on all investigated biological layers. The most important changes occurred on the metabolic level. A dependency on extracellular glutamine was found for proliferating cells, but not for mature neurons. Proliferating cells also displayed a pronounced glycolytic metabolism with no spare glycolytic and mitochondrial capacities. Therefore, they were more sensitive for inhibitors of mitochondrial metabolism than mature neurons, while no sensitivity difference was observed for non-specific toxicants. Thus, we unraveled a toxicant sensitivity dependent on the differentiation-stage.In paper #3, the knowledge on the dominant glycolytic metabolism of the immature LUHMES cells was used to improve the sensitivity of the NeuriTox test to mitochondrial toxicants. By exchanging the medium sugar from glucose (Glc) to galactose (Gal), strong metabolic reprogramming of LUHMES cells was achieved without affecting functional parameters, as e.g. neurite outgrowth kinetics. The performance of the Glc-Gal NeuriTox test was examined with 50 compounds. It showed high sensitivity and specificity to detect both, mitochondrial toxicants and neurotoxicants. For the mitochondrial toxicants, an independent hit follow-up assay was developed to specify the mitochondrial mode of action, on the level of respiratory chain complex impairment.To address an important problem about in vitro screen data obtained here and in databases, the discussion suggests a universal concept for probability based hazard assessment. It overcomes the binary hazard classification of test substances as toxic vs non-toxic.publishe

    Pharmacological LRH-1/Nr5a2 inhibition limits pro-inflammatory cytokine production in macrophages and associated experimental hepatitis

    No full text
    Liver receptor homolog-1 (LRH-1, Nr5a2) is an orphan nuclear receptor mainly expressed in tissues of endodermal origin, where its physiological role has been extensively studied. LRH-1 has been implicated in liver cell differentiation and proliferation, as well as glucose, lipid, and bile acid metabolism. In addition, increasing evidence highlights its role in immunoregulatory processes via glucocorticoid synthesis in the intestinal epithelium. Although the direct function of LRH-1 in immune cells is fairly elucidated, a role of LRH-1 in the regulation of macrophage differentiation has been recently reported. In this study, we aimed to investigate the role of LRH-1 in the regulation of pro-inflammatory cytokine production in macrophages. Our data demonstrate that pharmacological inhibition, along with LRH-1 knockdown, significantly reduced the lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines in the macrophage line RAW 264.7 cells, as well as in primary murine macrophages. This inhibitory effect was found to be independent of defects of LRH-1-regulated cell proliferation or toxic effects of the LRH-1 inhibitors. In contrast, LRH-1 inhibition reduced the mitochondrial ATP production and metabolism of macrophages through downregulation of the LRH-1 targets glucokinase and glutminase-2, and thus impairing the LPS-induced macrophage activation. Interestingly, in vivo pharmacological inhibition of LRH-1 also resulted in reduced tumor necrosis factor (TNF) production and associated decreased liver damage in a macrophage- and TNF-dependent mouse model of hepatitis. Noteworthy, despite hepatocytes expressing high levels of LRH-1, pharmacological inhibition of LRH-1 per se did not cause any obvious liver damage. Therefore, this study proposes LRH-1 as an emerging therapeutic target in the treatment of inflammatory disorders, especially where macrophages and cytokines critically decide the extent of inflammation.publishe

    Canagliflozin mediated dual inhibition of mitochondrial glutamate dehydrogenase and complex I : an off-target adverse effect

    No full text
    Recent FDA Drug Safety Communications report an increased risk for acute kidney injury in patients treated with the gliflozin class of sodium/glucose co-transport inhibitors indicated for treatment of type 2 diabetes mellitus. To identify a potential rationale for the latter, we used an in vitro human renal proximal tubule epithelial cell model system (RPTEC/TERT1), physiologically representing human renal proximal tubule function. A targeted metabolomics approach, contrasting gliflozins to inhibitors of central carbon metabolism and mitochondrial function, revealed a double mode of action for canagliflozin, but not for its analogs dapagliflozin and empagliflozin. Canagliflozin inhibited the glutamate dehydrogenase (GDH) and mitochondrial electron transport chain (ETC) complex I at clinically relevant concentrations. This dual inhibition specifically prevented replenishment of tricarboxylic acid cycle metabolites by glutamine (anaplerosis) and thus altered amino acid pools by increasing compensatory transamination reactions. Consequently, canagliflozin caused a characteristic intracellular accumulation of glutamine, glutamate and alanine in confluent, quiescent RPTEC/TERT1. Canagliflozin, but none of the classical ETC inhibitors, induced cytotoxicity at particularly low concentrations in proliferating RPTEC/TERT1, serving as model for proximal tubule regeneration in situ. This finding is testimony of the strong dependence of proliferating cells on glutamine anaplerosis via GDH. Our discovery of canagliflozin-mediated simultaneous inhibition of GDH and ETC complex I in renal cells at clinically relevant concentrations, and their particular susceptibility to necrotic cell death during proliferation, provides a mechanistic rationale for the adverse effects observed especially in patients with preexisting chronic kidney disease or previous kidney injury characterized by sustained regenerative tubular epithelial cell proliferation.publishe

    Reductive modification of genetically encoded 3-nitrotyrosine sites in alpha synuclein expressed in E.coli

    No full text
    Tyrosine nitration is a post-translational protein modification relevant to various pathophysiological processes. Chemical nitration procedures have been used to generate and study nitrated proteins, but these methods regularly lead to modifications at other amino acid residues. A novel strategy employs a genetic code modification that allows incorporation of 3-nitrotyrosine (3-NT) during ribosomal protein synthesis to generate a recombinant protein with defined 3-NT-sites, in the absence of other post-translational modifications. This approach was applied to study the generation and stability of the 3-NT moiety in recombinant proteins produced in E.coli. Nitrated alpha-synuclein (ASYN) was selected as exemplary protein, relevant in Parkinson's disease (PD). A procedure was established to obtain pure tyrosine-modified ASYN in mg amounts. However, a rapid (t1/2 = 0.4 h) reduction of 3-NT to 3-aminotyrosine (3-AT) was observed. When screening for potential mechanisms, we found that 3-NT can be reduced enzymatically to 3-AT, whilst biologically relevant low molecular weight reductants, such as NADPH or GSH, did not affect 3-NT. A genetic screen for E.coli proteins, involved in the observed 3-NT reduction, revealed the contribution of several, possibly redundant pathways. Green fluorescent protein was studied as an alternative model protein. These data confirm 3-NT reduction as a broadly-relevant pathway in E.coli. In conclusion, incorporation of 3-NT as a genetically-encoded non-natural amino acid allows for generation of recombinant proteins with specific nitration sites. The potential reduction of the 3-NT moiety by E.coli, however, requires attention to the design of the purification strategy for obtaining pure nitrated protein.publishe

    A LUHMES 3D dopaminergic neuronal model for neurotoxicity testing allowing long-term exposure and cellular resilience analysis

    No full text
    Several shortcomings of current Parkinson's disease (PD) models limit progress in identification of environmental contributions to disease pathogenesis. The conditionally immortalized cell line LUHMES promises to make human dopaminergic neuronal cultures more easily available, but these cells are difficult to culture for extended periods of time. We overcame this problem by culturing them in 3D with minor medium modifications. The 3D neuronal aggregates allowed penetration by small molecules and sufficient oxygen and nutrient supply for survival of the innermost cells. Using confocal microscopy, gene expression, and flow cytometry, we characterized the 3D model and observed a highly reproducible differentiation process. Visualization and quantification of neurites in aggregates was achieved by adding 2 % red fluorescent protein-transfected LUHMES cells. The mitochondrial toxicants and established experimental PD agents, rotenone and MPP(+), perturbed genes involved in one-carbon metabolism and transsulfuration pathways (ASS1, CTH, and SHTM2) as in 2D cultures. We showed, for the first time in LUHMES, down-regulation of mir-7, a miRNA known to target alpha-synuclein and to be involved in PD. This was observed as early as 12 h after rotenone exposure, when pro-apoptotic mir-16 and rotenone-sensitive mir-210 were not yet significantly perturbed. Finally, washout experiments demonstrated that withdrawal of rotenone led to counter-regulation of mir-7 and ASS1, CTH, and SHTM2 genes. This suggests a possible role of these genes in direct cellular response to the toxicant, and the model appears to be suitable to address the processes of resilience and recovery in neurotoxicology and Parkinson's disease in future studies.publishe

    Prevention of neuronal apoptosis by astrocytes through thiol-mediated stress response modulation and accelerated recovery from proteotoxic stress

    No full text
    The development of drugs directly interfering with neurodegeneration has proven to be astonishingly difficult. Alternative therapeutic approaches could result from a better understanding of the supportive function of glial cells for stressed neurons. Therefore, here, we investigated the mechanisms involved in the endogenous neuro-defensive activity of astrocytes. A well-established model of postmitotic human dopaminergic neurons (LUHMES cells) was used in the absence ('LUHMES' mono-culture) or presence ('co-culture') of astrocytes. Inhibition of the LUHMES proteasome led to proteotoxic (protein aggregates; ATF-4 induction) and oxidative (GSH-depletion; NRF-2 induction) stress, followed by neuronal apoptosis. The presence of astrocytes attenuated the neuronal stress response, and drastically reduced neurodegeneration. A similar difference between LUHMES mono- and co-cultures was observed, when proteotoxic and oxidative stress was triggered indirectly by inhibitors of mitochondrial function (rotenone, MPP+). Human and murine astrocytes continuously released glutathione (GSH) into the medium, and transfer of glia-conditioned medium was sufficient to rescue LUHMES, unless it was depleted for GSH. Also, direct addition of GSH to LUHMES rescued the neurons from inhibition of the proteasome. Both astrocytes and GSH blunted the neuronal ATF-4 response and similarly upregulated NRF-1/NFE2L1, a transcription factor counter-regulating neuronal proteotoxic stress. Astrocyte co-culture also helped to recover the neurons' ability to degrade aggregated poly-ubiquitinated proteins. Overexpression of NRF-1 attenuated the toxicity of proteasome inhibition, while knockdown increased toxicity. Thus, astrocytic thiol supply increased neuronal resilience to various proteotoxic stressors by simultaneously attenuating cell death-related stress responses, and enhancing the recovery from proteotoxic stress through upregulation of NRF-1.publishe

    Stage-specific metabolic features of differentiating neurons : Implications for toxicant sensitivity

    No full text
    Developmental neurotoxicity (DNT) may be induced when chemicals disturb a key neurodevelopmental process, and many tests focus on this type of toxicity. Alternatively, DNT may occur when chemicals are cytotoxic only during a specific neurodevelopmental stage. The toxicant sensitivity is affected by the expression of toxicant targets and by resilience factors. Although cellular metabolism plays an important role, little is known how it changes during human neurogenesis, and how potential alterations affect toxicant sensitivity of mature vs. immature neurons. We used immature (d0) and mature (d6) LUHMES cells (dopaminergic human neurons) to provide initial answers to these questions. Transcriptome profiling and characterization of energy metabolism suggested a switch from predominantly glycolytic energy generation to a more pronounced contribution of the tricarboxylic acid cycle (TCA) during neuronal maturation. Therefore, we used pulsed stable isotope-resolved metabolomics (pSIRM) to determine intracellular metabolite pool sizes (concentrations), and isotopically non-stationary 13C-metabolic flux analysis (INST 13C-MFA) to calculate metabolic fluxes. We found that d0 cells mainly use glutamine to fuel the TCA. Furthermore, they rely on extracellular pyruvate to allow continuous growth. This metabolic situation does not allow for mitochondrial or glycolytic spare capacity, i.e. the ability to adapt energy generation to altered needs. Accordingly, neuronal precursor cells displayed a higher sensitivity to several mitochondrial toxicants than mature neurons differentiated from them. In summary, this study shows that precursor cells lose their glutamine dependency during differentiation while they gain flexibility of energy generation and thereby increase their resistance to low concentrations of mitochondrial toxicants.publishe

    Mapping the cellular response to electron transport chain inhibitors reveals selective signaling networks triggered by mitochondrial perturbation

    No full text
    Mitochondrial perturbation is a key event in chemical-induced organ toxicities that is incompletely understood. Here, we studied how electron transport chain (ETC) complex I, II, or III (CI, CII and CIII) inhibitors affect mitochondrial functionality, stress response activation, and cell viability using a combination of high-content imaging and TempO-Seq in HepG2 hepatocyte cells. CI and CIII inhibitors perturbed mitochondrial membrane potential (MMP) and mitochondrial and cellular ATP levels in a concentration- and time-dependent fashion and, under conditions preventing a switch to glycolysis attenuated cell viability, whereas CII inhibitors had no effect. TempO-Seq analysis of changes in mRNA expression pointed to a shared cellular response to CI and CIII inhibition. First, to define specific ETC inhibition responses, a gene set responsive toward ETC inhibition (and not to genotoxic, oxidative, or endoplasmic reticulum stress) was identified using targeted TempO-Seq in HepG2. Silencing of one of these genes, NOS3, exacerbated the impact of CI and CIII inhibitors on cell viability, indicating its functional implication in cellular responses to mitochondrial stress. Then by monitoring dynamic responses to ETC inhibition using a HepG2 GFP reporter panel for different classes of stress response pathways and applying pathway and gene network analysis to TempO-Seq data, we looked for downstream cellular events of ETC inhibition and identified the amino acid response (AAR) as being triggered in HepG2 by ETC inhibition. Through in silico approaches we provide evidence indicating that a similar AAR is associated with exposure to mitochondrial toxicants in primary human hepatocytes. Altogether, we (i) unravel quantitative, time- and concentration-resolved cellular responses to mitochondrial perturbation, (ii) identify a gene set associated with adaptation to exposure to active ETC inhibitors, and (iii) show that ER stress and an AAR accompany ETC inhibition in HepG2 and primary hepatocytes.publishe

    Identification of mitochondrial toxicants by combined in silico and in vitro studies : a structure-based view on the Adverse Outcome Pathway

    Get PDF
    Drugs that modulate mitochondrial function can cause severe adverse effects. Unfortunately, mitochondrial toxicity is often not detected in animal models, which stresses the need for predictive in silico approaches. In this study we present a model for predicting mitochondrial toxicity focusing on human mitochondrial respiratory complex I (CI) inhibition by combining structure-based methods with machine learning. The structure-based studies are based on CI inhibition by the pesticide rotenone, which is known to induce parkinsonian motor deficits, and its analogue deguelin. After predicting a common binding mode for these two compounds using induced-fit docking, two structure-based pharmacophore models were created and used for virtual screening of DrugBank and the Chemspace library. The hit list was further refined by three different machine learning models, and the top ranked compounds were selected for experimental testing. Using a tiered approach, the compounds were tested in three distinct in vitro assays, which led to the identification of three specific CI inhibitors. These results demonstrate that risk assessment and hazard analysis can benefit from combining structure-based methods and machine learning.publishe

    Major changes of cell function and toxicant sensitivity in cultured cells undergoing mild, quasi-natural genetic drift

    No full text
    Genomic drift affects the functional properties of cell lines, and the reproducibility of data from in vitro studies. While chromosomal aberrations and mutations in single pivotal genes are well explored, little is known about effects of minor, possibly pleiotropic, genome changes. We addressed this question for the human dopaminergic neuronal precursor cell line LUHMES by comparing two subpopulations (SP) maintained either at the American-Type-Culture-Collection (ATCC) or by the original provider (UKN). Drastic differences in susceptibility towards the specific dopaminergic toxicant 1-methyl-4-phenylpyridinium (MPP+) were observed. Whole-genome sequencing was performed to identify underlying genetic differences. While both SP had normal chromosome structures, they displayed about 70 differences on the level of amino acid changing events. Some of these differences were confirmed biochemically, but none offered a direct explanation for the altered toxicant sensitivity pattern. As second approach, markers known to be relevant for the intended use of the cells were specifically tested. The “ATCC” cells rapidly down-regulated the dopamine-transporter and tyrosine-hydroxylase after differentiation, while “UKN” cells maintained functional levels. As the respective genes were not altered themselves, we conclude that polygenic complex upstream changes can have drastic effects on biochemical features and toxicological responses of relatively similar SP of cells
    corecore