384 research outputs found
High-spin structures of 88Kr and 89Rb: Evolution from collective to single-particle behaviors
The high-spin states of the two neutron-rich nuclei, 88Kr and 89R have been
studied from the 18O + 208Pb fusion-fission reaction. Their level schemes were
built from triple gamma-ray coincidence data and gamma-gamma angular
correlations were analyzed in order to assign spin and parity values to most of
the observed states. The two levels schemes evolve from collective structures
to single-particle excitations as a function of the excitation energy.
Comparison with results of shell-model calculations gives the specific proton
and neutron configurations which are involved to generate the angular momentum
along the yrast lines.Comment: 12 pages, 9 figures, Physical Review C (2013) in pres
New determinations of gamma-ray line intensities of the Ep = 550 keV and Ep = 1747 keV resonances of the 13-C(p,gamma)14-N reaction
Gamma-ray angular distributions for the resonances at Ep = 550 keV and 1747
keV of the radiative capture reaction 13-C(p,g)14-N have been measured, using
intense proton beams on isotopically pure 13-C targets. Relative intensities
for the strongest transitions were extracted with an accuracy of typically five
per cent, making these resonances new useful gamma-ray standards for efficiency
calibration in the energy range Egamma = 1.6 to 9 MeV.Comment: 17 pages, 6 figures, Nuclear Instruments and Methods, Sec. A,
accepte
Ground-gamma band mixing and evolution of collectivity in even-even neutron-rich nuclei with 40<Z<50
We propose an extended band mixing formalism capable of describing the
ground-gamma band interaction in a wide range of collective spectra beyond the
regions of well deformed nuclei. On this basis we explain the staggering
effects observed in the gamma bands of Mo, Ru and Pd nuclei providing a
consistent interpretation of new experimental data in the neutron rich region.
As a result the systematic behavior of the odd-even staggering effect and some
general characteristics of the spectrum such as the mutual disposition of the
bands, the interaction strength and the band structures is explained as the
manifestation of respective changes in collective dynamics of the system.Comment: 17 pages, 6 figures, 4 table
High-spin structures of 136Cs
Odd-odd 136Cs nuclei have been produced in the 18O + 208Pb and 12C + 238U
fusion-fission reactions and their gamma rays studied with the Euroball array.
The high-spin level scheme has been built up to ~ 4.7 MeV excitation energy and
spin I ~ 16 hbar from the triple gamma-ray coincidence data. The configurations
of the three structures observed above ~ 2 MeV excitation energy are first
discussed by analogy with the proton excitations identified in the semi-magic
137Cs nucleus, which involve the three high-j orbits lying above the Z=50 gap,
pi g_{7/2}, pi d_{5/2} and pi h_{11/2}. This is confirmed by the results of
shell-model calculations performed in this work.Comment: 6 pages, 4 figures, 3 table
Evolution of shell structure in neutron-rich calcium isotopes
We employ interactions from chiral effective field theory and compute the
binding energies and low-lying excitations of calcium isotopes with the
coupled-cluster method. Effects of three-nucleon forces are included
phenomenologically as in-medium two-nucleon interactions, and the coupling to
the particle continuum is taken into account using a Berggren basis. The
computed ground-state energies and the low-lying 2+ states for the isotopes
42,48,50,52Ca are in good agreement with data, and we predict the excitation
energy of the first 2+ state in 54Ca at 1.9 MeV, displaying only a weak
sub-shell closure. In the odd-mass nuclei 53,55,61Ca we find that the positive
parity states deviate strongly from the naive shell model.Comment: 5 pages, 4 figures; small correction of effective 3NF and slight
change of the corresponding parameters; updated figures and tables; main
results and conclusions unchange
High-spin states with seniority v=4,4,6 in 119-126Sn
The 119-126Sn nuclei have been produced as fission fragments in two reactions
induced by heavy ions: 12C+238U at 90 MeV bombarding energy, 18O+208Pb at 85
MeV. Their level schemes have been built from gamma rays detected using the
Euroball array. High-spin states located above the long-lived isomeric states
of the even- and odd-A 120-126Sn nuclei have been identified. Moreover isomeric
states lying around 4.5 MeV have been established in 120,122,124,126Sn from the
delayed coincidences between the fission fragment detector SAPhIR and the
Euroball array. The states located above 3-MeV excitation energy are ascribed
to several broken pairs of neutrons occupying the nu h11/2 orbit. The maximum
value of angular momentum available in such a high-j shell, i.e. for
mid-occupation and the breaking of the three neutron pairs, has been
identified. This process is observed for the first time in spherical nuclei.Comment: 20 pages, 22 figures, 12 tables, accepted for publication in Physical
Review
Fast-neutron induced background in LaBr3:Ce detectors
The response of a scintillation detector with a cylindrical 1.5-inch LaBr3:Ce
crystal to incident neutrons has been measured in the energy range En = 2-12
MeV. Neutrons were produced by proton irradiation of a Li target at Ep = 5-14.6
MeV with pulsed proton beams. Using the time-of-flight information between
target and detector, energy spectra of the LaBr3:Ce detector resulting from
fast neutron interactions have been obtained at 4 different neutron energies.
Neutron-induced gamma rays emitted by the LaBr3:Ce crystal were also measured
in a nearby Ge detector at the lowest proton beam energy. In addition, we
obtained data for neutron irradiation of a large-volume high-purity Ge detector
and of a NE-213 liquid scintillator detector, both serving as monitor detectors
in the experiment. Monte-Carlo type simulations for neutron interactions in the
liquid scintillator, the Ge and LaBr3:Ce crystals have been performed and
compared with measured data. Good agreement being obtained with the data, we
present the results of simulations to predict the response of LaBr3:Ce
detectors for a range of crystal sizes to neutron irradiation in the energy
range En = 0.5-10 MeVComment: 28 pages, 10 figures, 4 Table
Observation of the lowest energy gamma-ray in any superdeformed nucleus : 196Bi
New results on the superdeformed Bi nucleus a re reported. We have
observed with the EUROBALL IV -ray spectrometer array a superdeformed
trans ition of 124 keV which is the lowest observed energy -ray in any
superdeformed nucleus. We have de velopped microscopic cranked
Hartree-Fock-Bogoliubov calculations using the SLy4 effective force and a
realistic surface p airing which strongly support the
([651]1/2[752]5/2) assignment of this su
perdeformed band
Medium-spin states in neutron-rich 83As and 81As
The 83,81 As nuclei have been produced as fission fragments in the fusion reaction 18O + 208Pb at 85 MeV bombarding energy and studied with the Euroball array. Medium-spin states of 83,81 As have been established up to ∼3.5 MeV excitation energy. From angular correlation analysis, spin values have been assigned to most of the 81 As excited states. The behaviors of the yrast structures identified in this work are discussed in comparison with the general features known in the mass region. Then they are compared to the results of two theoretical approaches: the "rotor + quasiparticle" for 81 As and the shell model using the effective interactions JUN45 for 83,81 As
Gamma ray production cross sections in proton induced reactions on natural Mg, Si and Fe targets over the proton energy range 30 up to 66 MeV
Gamma-ray excitation functions have been measured for 30, 42, 54 and 66 MeV
proton beams accelerated onto C + O (Mylar), Mg, Si, and Fe targets of
astrophysical interest at the separate-sector cyclotron of iThemba LABS in
Somerset West (Cape Town, South Africa). A large solid angle, high energy
resolution detection system of the Eurogam type was used to record Gamma-ray
energy spectra. Derived preliminary results of Gamma-ray line production cross
sections for the Mg, Si and Fe target nuclei are reported and discussed. The
current cross section data for known, intense Gamma-ray lines from these nuclei
consistently extend to higher proton energies previous experimental data
measured up to Ep ~ 25 MeV at the Orsay and Washington tandem accelerators.
Data for new Gamma-ray lines observed for the first time in this work are also
reported.Comment: 11 pages, 6 figures. IOP Institute of Physics Conference Nuclear
Physics in Astrophysics VII, 28th EPF Nuclear Physics Divisional Conference,
May 18-22 2015, York, U
- …