22 research outputs found

    Low serum albumin and the acute phase response predict low serum selenium in HIV-1 infected women

    Get PDF
    BACKGROUND: Low serum selenium has been associated with lower CD4 counts and greater mortality among HIV-1-seropositive individuals, but most studies have not controlled for serum albumin and the presence of an acute phase response. METHODS: A cross-sectional study was conducted to evaluate relationships between serum selenium concentrations and CD4 count, plasma viral load, serum albumin, and acute phase response markers among 400 HIV-1-seropositive women. RESULTS: In univariate analyses, lower CD4 count, higher plasma viral load, lower albumin, and the presence of an acute phase response were each significantly associated with lower serum selenium concentrations. In multivariate analyses including all four of these covariates, only albumin remained significantly associated with serum selenium. For each 0.1 g/dl increase in serum albumin, serum selenium increased by 0.8 μg/l (p < 0.001). Women with an acute phase response also had lower serum selenium (by 5.6 μg/l, p = 0.06). CONCLUSION: Serum selenium was independently associated with serum albumin, but not with CD4 count or plasma viral load, in HIV-1-seropositive women. Our findings suggest that associations between lower serum selenium, lower CD4 count, and higher plasma viral load may be related to the frequent occurrence of low serum albumin and the acute phase response among individuals with more advanced HIV-1 infection

    Sarcopenia: etiology, clinical consequences, intervention, and assessment

    Get PDF
    The aging process is associated with loss of muscle mass and strength and decline in physical functioning. The term sarcopenia is primarily defined as low level of muscle mass resulting from age-related muscle loss, but its definition is often broadened to include the underlying cellular processes involved in skeletal muscle loss as well as their clinical manifestations. The underlying cellular changes involve weakening of factors promoting muscle anabolism and increased expression of inflammatory factors and other agents which contribute to skeletal muscle catabolism. At the cellular level, these molecular processes are manifested in a loss of muscle fiber cross-sectional area, loss of innervation, and adaptive changes in the proportions of slow and fast motor units in muscle tissue. Ultimately, these alterations translate to bulk changes in muscle mass, strength, and function which lead to reduced physical performance, disability, increased risk of fall-related injury, and, often, frailty. In this review, we summarize current understanding of the mechanisms underlying sarcopenia and age-related changes in muscle tissue morphology and function. We also discuss the resulting long-term outcomes in terms of loss of function, which causes increased risk of musculoskeletal injuries and other morbidities, leading to frailty and loss of independence
    corecore