50 research outputs found

    Plasticity, crack initiation and defect resistance in alkali-borosilicate glasses: From normal to anomalous behavior

    Get PDF
    We provide a comprehensive description of the defect tolerance of sodium-borosilicate glasses upon sharp contact loading. This is motivated by the key role which is taken by this particular glass system in a wide variety of applications, ranging from electronic substrates, display covers and substrates for biomedical imaging and sensing to, e.g., radioactive waste vitrification. The present report covers the mechanical properties of glasses in the Na2O–B2O3–SiO2 ternary over the broad range of compositions from pure SiO2 to binary sodium-borates, and crossing the regions of various commercially relevant specialty borosilicate glasses, such as the multi-component Duran-, Pyrex- and BK7-type compositions and typical soda-lime silicate glasses, which are also included in this study. In terms of structure, the considered glasses may be separated into two groups, that is, one series which contains only bridging oxygen atoms, and another series which is designed with an increasing number of non-bridging oxygen ions. Elastic moduli, Poisson ratio, hardness as well as creep and crack resistance were evaluated, as well as the contribution of densification to the overall amount of indentation deformation. Correlations between the mechanical properties and structural characteristics of near- and mid-range order are discussed, from which we obtain a mechanistic view at the molecular reactions which govern the overall deformation reaction and, ultimately, contact cracking

    Aqueous Black Colloids of Reticular Nanostructured Gold

    Get PDF
    Since ancient times, noble gold has continuously contributed to several aspects of life from medicine to electronics. It perpetually reveals its new features. We report the finding of a unique form of gold, reticular nanostructured gold (RNG), as an aqueous black colloid, for which we present a one-step synthesis. The reticules consist of gold crystals that interconnect to form compact strands. RNG exhibits high conductivity and low reflection and these features, coupled with the high specific surface area of the material, could prove valuable for applications in electronics and catalysis. Due to high absorption throughout the visible and infrared domain, RNG has the potential to be applied in the construction of sensitive solar cells or as a substrate for Raman spectroscopy

    Grayscale Electron Beam Lithography Direct Patterned Antimony Sulfide

    Full text link
    The rise of micro/nanooptics and lab-on-chip devices demands the fabrication of three-dimensional structures with decent resolution. Here, we demonstrate the combination of grayscale electron beam lithography and direct forming methodology to fabricate antimony sulfide structures with free form for the first time. The refractive index of the electron beam patterned structure was calculated based on an optimization algorithm that is combined with genetic algorithm and transfer matrix method. By adopting electron irradiation with variable doses, 4-level Fresnel Zone Plates and metalens were produced and characterized. This method can be used for the fabrication of three-dimensional diffractive optical elements and metasurfaces in a single step manner.Comment: 17 pages, 4 figures, 1 table, 1 scheme. The Supplement Information will be given in a second Arxiv submission or the published journa
    corecore