24 research outputs found

    Combined aptamer and transcriptome sequencing of single cells.

    Get PDF
    The transcriptome and proteome encode distinct information that is important for characterizing heterogeneous biological systems. We demonstrate a method to simultaneously characterize the transcriptomes and proteomes of single cells at high throughput using aptamer probes and droplet-based single cell sequencing. With our method, we differentiate distinct cell types based on aptamer surface binding and gene expression patterns. Aptamers provide advantages over antibodies for single cell protein characterization, including rapid, in vitro, and high-purity generation via SELEX, and the ability to amplify and detect them with PCR and sequencing

    Modular barcode beads for microfluidic single cell genomics.

    No full text

    Microfluidic particle zipper enables controlled loading of droplets with distinct particle types

    No full text
    Current encapsulation approaches control the number of particles encapsulated per droplet, but not the particle types; consequently, they are unable to generate droplets containing combinations of distinct particle types, limiting the reactions that can be performed. We describe a microfluidic particle zipper that allows the number and types of particles encapsulated in every droplet to be controlled. The approach exploits self-ordering to generate repeating particle patterns that allow controlled encapsulation in droplets. We use the method to combine barcode particles with gel encapsulated cells to profile multiple disease relevant genomic loci with single cell sequencing. Particle zippers can operate in series to generate complex particle compositions in droplets

    The pupylation pathway and its role in mycobacteria

    Get PDF
    <p>Abstract</p> <p>Pupylation is a post-translational protein modification occurring in actinobacteria through which the small, intrinsically disordered protein Pup (prokaryotic ubiquitin-like protein) is conjugated to lysine residues of proteins, marking them for proteasomal degradation. Although functionally related to ubiquitination, pupylation is carried out by different enzymes that are evolutionarily linked to bacterial carboxylate-amine ligases. Here, we compare the mechanism of Pup-conjugation to target proteins with ubiquitination, describe the evolutionary emergence of pupylation and discuss the importance of this pathway for survival of <it>Mycobacterium tuberculosis </it>in the host.</p
    corecore