8 research outputs found

    Structure of the motor descending pathways correlates with the temporal kinematics of hand movements

    Get PDF
    Simple Summary: How hand motor behavior relates to the microstructure of the underlying subcortical white matter pathways is yet to be fully understood. Here we consider two well-known examples of our everyday motor repertoire, reaching and reach-to-grasp, by looking at their temporal unfolding and at the microstructure of descending projection pathways, conveying motor information from the motor cortices towards the more ventral regions of the nervous system. We combine three-dimensional kinematics, describing the temporal profile of hand movements, with diffusion imaging tractography, exploring the microstructure of specific segments of the projection pathways (internal capsule, corticospinal and hand motor tracts). The results indicate that the level of anisotropy characterizing these white matter tracts can influence the temporal unfolding of reaching and reach-to-grasp movements. Abstract: The projection system, a complex organization of ascending and descending white matter pathways, is the principal system for conveying sensory and motor information, connecting frontal and sensorimotor regions with ventral regions of the central nervous system. The corticospinal tract (CST), one of the principal projection pathways, carries distal movement-related information from the cortex to the spinal cord, and whether its microstructure is linked to the kinematics of hand movements is still an open question. The aim of the present study was to explore how microstructure of descending branches of the projection system, namely the hand motor tract (HMT), the corticospinal tract (CST) and its sector within the internal capsule (IC), can relate to the temporal profile of reaching and reach-to-grasp movements. Projection pathways of 31 healthy subjects were virtually dissected by means of diffusion tractography and the kinematics of reaching and reach-to-grasp movements were also analyzed. A positive association between Hindrance Modulated Orientation Anisotropy (HMOA) and kinematics was observed, suggesting that anisotropy of the considered tract can influence the temporal unfolding of motor performance. We highlight, for the first time, that hand kinematics and the visuomotor transformation processes underlying reaching and reach-to-grasp movements relate to the microstructure of specific projection fibers subserving these movements

    Local Control Following Stereotactic Body Radiation Therapy for Liver Oligometastases: Lessons from a Quarter Century

    Get PDF
    The utilization of stereotactic body radiation therapy for the treatment of liver metastasis has been widely studied and has demonstrated favorable local control outcomes. However, several predictive factors play a crucial role in the efficacy of stereotactic body radiation therapy, such as the number and size (volume) of metastatic liver lesions, the primary tumor site (histology), molecular biomarkers (e.g., KRAS and TP53 mutation), the use of systemic therapy prior to SBRT, the radiation dose, and the use of advanced technology and organ motion management during SBRT. These prognostic factors need to be considered when clinical trials are designed to evaluate the efficacy of SBRT for liver metastases

    Attentional selection and identification of visual objects are reflected by distinct electrophysiological responses

    No full text
    Lateralised ERP responses were measured over posterior visual brain regions in response to visual search arrays that contained one colour singleton. In the localisation task, responses were determined by the visual hemifield where this singleton was presented. In the discrimination task, they were determined by the singletons’ shape. While an N2pc component was elicited in an identical fashion in both tasks, a subsequent sustained contralateral negativity was consistently present at posterior sites in the discrimination task only. This dissociation demonstrates that these two activations reflect distinct visual processing stages. We suggest that while the N2pc reflects the ability of the visual system both to identify and localise a relevant stimulus in the scene, the late sustained activity reflects the subsequent in-depth analysis and identification of these stimuli

    Vascular Remodeling in Moyamoya Angiopathy: From Peripheral Blood Mononuclear Cells to Endothelial Cells

    No full text
    The pathophysiological mechanisms of Moyamoya angiopathy (MA), which is a rare cerebrovascular condition characterized by recurrent ischemic/hemorrhagic strokes, are still largely unknown. An imbalance of vasculogenic/angiogenic mechanisms has been proposed as one possible disease aspect. Circulating endothelial progenitor cells (cEPCs) have been hypothesized to contribute to vascular remodeling of MA, but it remains unclear whether they might be considered a disease effect or have a role in disease pathogenesis. The aim of the present study was to provide a morphological, phenotypical, and functional characterization of the cEPCs from MA patients to uncover their role in the disease pathophysiology. cEPCs were identified from whole blood as CD45dimCD34+CD133+ mononuclear cells. Morphological, biochemical, and functional assays were performed to characterize cEPCs. A significant reduced level of cEPCs was found in blood samples collected from a homogeneous group of adult (mean age 46.86 ± 11.7; 86.36% females), Caucasian, non-operated MA patients with respect to healthy donors (HD; p = 0.032). Since no difference in cEPC characteristics and functionality was observed between MA patients and HD, a defective recruitment mechanism could be involved in the disease pathophysiology. Collectively, our results suggest that cEPC level more than endothelial progenitor cell (EPC) functionality seems to be a potential marker of MA. The validation of our results on a larger population and the correlation with clinical data as well as the use of more complex cellular model could help our understanding of EPC role in MA pathophysiology
    corecore