5 research outputs found

    Decentralized control with input saturation: a first step toward design

    Get PDF
    This article summarizes important observations about control of decentralized systems with input saturation and provides a few examples that give insight into the structure of such systems

    Decentralized stabilization of linear time invariant systems subject to actuator saturation

    Get PDF
    We are concerned here with the stabilization of a linear time invariant system subject to actuator saturation via decentralized control while using linear time invariant dynamic controllers. When there exists no actuator saturation, i.e. when we consider just linear time invariant systems, it is known that global stabilization can be done via decentralized control while using linear time invariant dynamic controllers only if the so-called decentralized fixed modes of it are all in the open left half complex plane. On the other hand, it is known that for linear time invariant systems subject to actuator saturation, semi-global stabilization can be done via centralized control while using linear time invariant dynamic controllers if and only if the open-loop poles of the linearized model of the given system are in the closed left half complex plane. This chapter establishes that the necessary conditions for semi-global stabilization of linear time invariant systems subject to actuator saturation via decentralized control while using linear time invariant dynamic controllers, are indeed the above two conditions, namely (a) the decentralized fixed modes of the linearized model of the given system are in the open left half complex plane, and (b) the open-loop poles of the linearized model of the given system are in the closed left half complex plane. We conjecture that these two conditions are also sufficient in general. We prove the sufficiency for the case when the linearized model of the given system is open-loop conditionally stable with eigenvalues on the imaginary axis being distinct. Proving the sufficiency is still an open problem for the case when the linearized model of the given system has repeated eigenvalues on the imaginary axis.\u

    5-Methyldeoxyuridine

    Get PDF
    We study decentralized stabilization of discrete-time linear time invariant (LTI) systems subject to actuator saturation, using LTI controllers. The requirement of stabilization under both saturation constraints and decentralization impose obvious necessary conditions on the open-loop plant, namely that its eigenvalues are in the closed unit disk and further that the eigenvalues on the unit circle are not decentralized fixed modes. The key contribution of this work is to provide a broad sufficient condition for decentralized stabilization under saturation. Specifically, we show through an iterative argument that stabilization is possible whenever 1) the open-loop eigenvalues are in the closed unit disk, 2) the eigenvalues on the unit circle are not decentralized fixed modes, and 3) these eigenvalues on the unit circle have algebraic multiplicity of 1

    Decentralized stabilization of linear time invariant systems subject to actuator saturation

    No full text
    We are concerned here with the stabilization of a linear time invariant system subject to actuator saturation via decentralized control while using linear time invariant dynamic controllers. When there exists no actuator saturation, i.e. when we consider just linear time invariant systems, it is known that global stabilization can be done via decentralized control while using linear time invariant dynamic controllers only if the so-called decentralized fixed modes of it are all in the open left half complex plane. On the other hand, it is known that for linear time invariant systems subject to actuator saturation, semi-global stabilization can be done via centralized control while using linear time invariant dynamic controllers if and only if the open-loop poles of the linearized model of the given system are in the closed left half complex plane. This chapter establishes that the necessary conditions for semi-global stabilization of linear time invariant systems subject to actuator saturation via decentralized control while using linear time invariant dynamic controllers, are indeed the above two conditions, namely (a) the decentralized fixed modes of the linearized model of the given system are in the open left half complex plane, and (b) the open-loop poles of the linearized model of the given system are in the closed left half complex plane. We conjecture that these two conditions are also sufficient in general. We prove the sufficiency for the case when the linearized model of the given system is open-loop conditionally stable with eigenvalues on the imaginary axis being distinct. Proving the sufficiency is still an open problem for the case when the linearized model of the given system has repeated eigenvalues on the imaginary axis

    Decentralized stabilization of linear time invariant systems subject to actuator saturation

    No full text
    We are concerned here with the stabilization of a linear time invariant system subject to actuator saturation via decentralized control while using linear time invariant dynamic controllers. When there exists no actuator saturation, i.e. when we consider just linear time invariant systems, it is known that global stabilization can be done via decentralized control while using linear time invariant dynamic controllers only if the so-called decentralized fixed modes of it are all in the open left half complex plane
    corecore