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Summary. We are concerned here with the stabilization of a linear time invariant
system subject to actuator saturation via decentralized control while using linear
time invariant dynamic controllers. When there exists no actuator saturation, i.e.
when we consider just linear time invariant systems, it is known that global stabiliza-
tion can be done via decentralized control while using linear time invariant dynamic
controllers only if the so-called decentralized fixed modes of it are all in the open left
half complex plane. On the other hand, it is known that for linear time invariant
systems subject to actuator saturation, semi-global stabilization can be done via
centralized control while using linear time invariant dynamic controllers if and only
if the open-loop poles of the linearized model of the given system are in the closed
left half complex plane. This chapter establishes that the necessary conditions for
semi-global stabilization of linear time invariant systems subject to actuator satura-
tion via decentralized control while using linear time invariant dynamic controllers,
are indeed the above two conditions, namely (a) the decentralized fixed modes of the
linearized model of the given system are in the open left half complex plane, and (b)
the open-loop poles of the linearized model of the given system are in the closed left
half complex plane. We conjecture that these two conditions are also sufficient in
general. We prove the sufficiency for the case when the linearized model of the given
system is open-loop conditionally stable with eigenvalues on the imaginary axis be-
ing distinct. Proving the sufficiency is still an open problem for the case when the
linearized model of the given system has repeated eigenvalues on the imaginary axis.

This text diffe
rs fro

m the actual publication



2 Stoorvogel, Saberi, Deliu and Sannuti

1 Introduction

Non-classical information and control structure are two essential and distin-
guishing characteristics of large-scale systems. The research on decentralized
control was formally initiated by Wang and Davison in their seminal paper
[17] in 1973, and has been the subject of intense study during the 70’s and
80’s. Most recently there has been a renewed interest in decentralized control
because of its fundamental role in the problem of coordinating the motion of
multiple autonomous agents which by itself has attracted significant atten-
tion. Coordinating the motion of autonomous agents has many engineering
applications besides having links to problems in biology, social behavior, sta-
tistical physics, and computer graphics. The engineering applications include
unmanned aerial vehicles (UAVs), autonomous underwater vehicles (AUVs)
and automated highway systems (AHS). A fundamental concept in the study
of stabilization using decentralized feedback controllers is that of fixed modes.
These are the poles of the system which cannot be shifted by just using any
type of decentralized feedback controllers. The idea of fixed modes was intro-
duced by Wang and Davison [17] who also show that decentralized stabiliza-
tion is possible if and only if the fixed modes are stable. More definitive results
are obtained by Corfmat and Morse [4] who present necessary and sufficient
conditions under which spectrum assignment is possible in terms of the rem-
nant polynomial of complementary subsystems. Since fixed modes constitute
such an important concept in decentralized control, their characterization and
determination has been the subject of many papers in the literature.

The majority of existing research in decentralized control makes a criti-
cal assumption that the interconnections between the subsystems of a given
system are unknown but have known bounds. In this regard, tools borrowed
from robust control theory and Lyapunov theory are used for the purpose of
either synthesis or analysis of decentralized controllers [10, 14, 13]. For the
case when the interconnections between the subsystems are known, the ex-
isting research is very sparse. In fact, in any case, beyond the decentralized
stabilization, no results are yet available dealing with the fundamental con-
trol issues such as exact or almost disturbance decoupling, control for various
performance objectives, etc.

From a different perspective, input saturation in any control scheme is a
common phenomenon. Every physically conceivable actuator has bounds on
its output. Valves can only be operated between fully open and fully closed
states, pumps and compressors have a finite throughput capacity and tanks
can only hold a certain volume. Ignoring such saturation effects in any con-
trol system design can be detrimental to the stability and performance of
controlled systems. A classical example for the detrimental effect of neglect-
ing actuator constraints is the Chernobyl unit 4 nuclear power plant disaster
� Support for this work was provided by the Office of Naval Research under grant

number N000140310848.
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Decentralized control with input saturation 3

in 1986 [16]. During the last decade and the present one, there has been an
intense research activity in the area of control of linear plants with saturat-
ing actuators. Such intense research activity has been chronicled in special
issues of journals and edited books (e.g. for recent literature see [8, 15, 2]).
Fundamental fuel behind such a research activity has been to accentuate the
industrial and thus the practical engineering relevance of modern control the-
ory. In this regard, the primary focus of the research activity has been to take
into account a priori the presence of saturation nonlinearities in any control
system analysis and design. A number of control issues have been considered
so far including internal, external, or internal plus external stabilization and
output regulation among others. Although not all aspects of these issues have
been completely resolved, it is fair to say that a good understanding of these
issues exists at present. However, issues related to performance, robustness
etc., are very poorly understood and still remain as challenging and complex
problems for future research.

Having been involved deeply in the past with research on linear systems
subject to constraints on its input and state variables, we are now ready to
open up a new front line of research in decentralized control by bringing into
picture the constraints of actuators. The focus of this chapter is to determine
the necessary and sufficient conditions for decentralized stabilization of linear
systems subject to constraints on actuators. Obviously, this is related to the
seminal work of Wang and Davison [17] but goes beyond it by bringing into
picture the input constraints on the top of decentralized constraint.

2 Problem formulation and preliminaries

Consider the linear time invariant systems subject to actuator saturation,

Σ :

⎧⎪⎨
⎪⎩

ẋ = Ax +
ν∑

i=1

Bi satui

yi = Cix, i = 1, . . . , ν,

(1)

where x ∈ R
n is a state, ui ∈ R

mi , i = 1, . . . , ν are control inputs, yi ∈ R
pi ,

i = 1, . . . , ν are measured outputs, and ‘sat’ denotes the standard saturation
element with the property that for any vector u of arbitrary dimension, sat(u)
is a vector of the same dimension as u, and moreover for any positive integer j
less than or equal to the dimension of u, the j’th component of satu, denoted
by (satu)j , compared to the j’th component of u, denoted by (u)j , has the
property,

(satu)j =

⎧⎪⎨
⎪⎩

1 if 1 < (u)j ,

(u)j if − 1 ≤ (u)j ≤ 1,

−1 if (u)j < −1.
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Here we are looking for ν controllers of the form,

Σi :
{

żi = Kizi + Liyi, zi ∈ R
si

ui = Mizi + Niyi.
(2)

The controller Σi is said to be i-th channel controller.
Before we state the problem we study in this chapter, we would like to

recall the concept of semi-global stabilization via decentralized control.

Definition 1. Consider a system Σ of the form (1). Then, we say that Σ is
semi-globally stabilizable via decentralized control if there exists nonnegative
integers s1, . . . , sν such that for any given collection of compact sets W ⊂ R

n

and Si ⊂ R
si , i = 1, . . . ν, there exist a decentralized set of controllers ν

controllers Σi, i = 1, . . . ν, of the form (2) such that the origin of the result-
ing closed-loop system is asymptotically stable and the domain of attraction
includes W × S1 × · · · × Sν .

The problem we would like to study in this chapter can be stated as follows:

Problem 1. Consider a system Σ of the form (1). Develop the necessary and
sufficient conditions such that Σ is semi-globally stabilizable via decentralized
control.

Remark 1. For the case when ν = 1, the above decentralized control problem
retorts to centralized semi-global stabilization of linear time invariant systems
subject to actuator saturation. Such a problem has been studied in depth by
Saberi and his coworkers. By now it is well known that such a centralized semi-
global stabilization problem is solvable by a linear time invariant dynamic
controller if and only if the linearized model of the given system is stabilizable
and detectable and all the open-loop poles of linearized model are in the closed
left half complex plane.

3 Review of decentralized stabilization of linear time
invariant systems

Before we proceed to consider the conditions for the solvability of Problem 1,
it is prudent to review the necessary and sufficient conditions for the global
decentralized stabilization of linearized model of the given system Σ. To do
so, we first write the linearized model of the given system Σ of (1) as,

Σ̄ :

⎧⎪⎨
⎪⎩

ẋ = Ax +
ν∑

i=1

Biui

yi = Cix, i = 1, . . . , ν.

(3)

The classical decentralized global stabilization problem or more general
decentralized pole placement problem for the linearized model Σ̄ can be stated
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as follows: Find linear time invariant dynamic controllers Σi, i = 1, . . . ν, of
the form (2) such that the poles of the closed-loop system comprising Σ̄ and
the controllers Σi, i = 1, . . . ν, has pre-specified poles in the open left half
complex plane.

It is easy to observe that, if (A, Bi) and (A, Ci) are respectively control-
lable and observable pairs for some i, the above decentralized pole placement
problem can be solved trivially.

Wang and Davison in [17] considered the general decentralized pole place-
ment problem for the linearized model Σ̄. Before we state their result, we need
to recall the important concept of decentralized fixed modes as was introduced
by Wang and Davison:

Definition 2. Consider a system Σ̄ of the form (3). Then, λ is called a de-
centralized fixed mode of the system Σ̄ if for all matrices K1, . . . , Kν we have
that λ is an eigenvalue of

AK := A +
ν∑

i=1

BiKiCi.

Wang and Davison proved in [17] that there exist dynamic controllers Σi,
i = 1, . . . ν, of the form (2) such that the poles of the closed-loop system
comprising Σ̄ and the controllers Σi, i = 1, . . . ν are at pre-specified locations
in the open left half complex plane provided that the decentralized fixed modes
of Σ̄ are themselves in the open left half complex plane and the set of pre-
specified locations in the open left half complex plane includes the set of
decentralized fixed modes of Σ̄. This obviously implies that the decentralized
stabilization of the linear time invariant system Σ̄ is possible if and only if
the decentralized fixed modes of it are all in open left half complex plane.

The above result implies that the decentralized fixed modes of Σ̄ play
a crucial role in decentralized stabilization of linear time invariant systems.
As such it is important to know how to compute such fixed modes. One of
the easiest procedure to do so is as follows: Since Ki = 0, i = 1, . . . ν, are
admissible, in this case AK retorts to A, and hence in view of Definition 2,
the decentralized fixed modes are naturally a subset of the eigenvalues of A.
Thus the first step is to compute the eigenvalues of A. Second, it can be
shown that if Ki, i = 1, . . . ν, are randomly chosen, then with probability one
the decentralized fixed modes are common eigenvalues of A and AK . Since
algorithms are well developed to determine the eigenvalues of a matrix, the
computation of decentralized fixed modes is quite straightforward.

After the introduction of the concept of decentralized fixed modes, there
has been quite some research on interpretations of this concept. The crucial
step in understanding the decentralized fixed modes was its connection to
complementary systems as introduced by Corfmat and Morse in the paper
[4]. The paper [1] by Anderson and Clements used the ideas of Corfmat and
Morse to yield the following characterization of decentralized fixed modes:
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Lemma 1. Consider the system Σ̄ of (3). We define,

B =
(
B1 · · · Bν

)
, C =

⎛
⎜⎝

C1

...
Cν

⎞
⎟⎠ .

Then λ is a decentralized fixed mode if and only if at least one of the following
three conditions is satisfied:

• λ is an uncontrollable eigenvalue of (A, B).
• λ is an unobservable eigenvalue of (C, A).
• There exists a partition of the integers {1, 2, . . . , ν} into two disjoint sets

{i1, . . . , iα} and {j1, . . . , jν−α} where 0 < α < ν for which we have

rank

⎛
⎜⎜⎜⎝

λI − A Bi1 · · · Biα

Cj1 0 · · · 0
...

...
. . .

...
Cjν−α 0 · · · 0

⎞
⎟⎟⎟⎠ < n.

Basically the decentralized fixed modes are therefore common blocking
zeros of all complementary systems which are, moreover, either unobservable
or uncontrollable for each complementary system. For a detailed investigation
of blocking zeros we refer to the paper [3]. Other attempts to characterize the
decentralized fixed modes can be found in for instance [12, 6, 7].

The above discussion focuses on developing the necessary and sufficient
condition under which stabilization of a linear time invariant system by a set of
decentralized controllers is possible. The next issue that needs to be discussed
pertains to how does one construct systematically the set of decentralized
controllers that stabilize a given system assuming that it is possible to do
so. In this regard, it is important to recognize that implicit in the proof of
pole placement result of Wang and Davison [17] is a constructive algorithm.
This algorithm requires as a first step the (possibly random) selection of Ki,
i = 1, . . . ν, such that all the eigenvalues of

AK = A +
ν∑

i=1

BiKiCi

are distinct from those of A except for the decentralized fixed modes. Then,
dynamic feedback is successively employed to arrive at a dynamic controller
Σi, i = 1, . . . ν, placing the poles of resulting closed-loop system that are
both controllable and observable eigenvalues of the pairs (A, Bi) and (A, Ci)
respectively. Also, Corfmat and Morse [4] have studied the decentralized feed-
back control problem from the point of view of determining a more complete
characterization of conditions for stabilizability and pole placement as well
as constructing a set of stabilizing decentralized controllers. Their basic ap-
proach is to determine conditions under which a system Σ̄ of the form (3) can
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Decentralized control with input saturation 7

be made controllable and observable from the input and output variables of
a given controller by static feedback applied by the other controllers. Then
dynamic compensation can be employed at this controller in a standard way
to place the poles of the closed-loop system.

It is not hard to see that a necessary condition to make Σ̄ controllable and
observable from a single controller is that none of the transfer functions

Ci(sI − A)−1Bj

vanish identically for all i = 1, . . . ν, and j = 1, . . . ν. A system satisfying this
condition is termed strongly connected. If a system is not strongly connected,
the given system can be decomposed into strongly connected subsystems and
each subsystem can be made then controllable and observable from one of its
controllers.

As outlined in an early survey paper by Sandell et al [11], as a practical
design method, the Corfmat and Morse method suffers some defects. At first,
it can be noted that even if all the modes of a large scale system can be made
controllable and observable from a single controller (or a few controllers if
the given system is not strongly connected), some of the modes may be very
weakly controllable and observable. Thus, impractically large gains may be
required to place all the poles from a single controller. Second, it is unclear
that the approach uses the designer’s available degrees of freedom in the best
way. Essentially, the approach seems to require that all the disturbances in the
system propagate to a single output, where they can be observed and compen-
sated for by the control signals at an adjacent input. Finally, concentration of
all the complexity of the control structure at a single (or few) controllers may
be undesirable.

As pointed out once again in [11], the constructive approach of Wang and
Davison also suffers similar drawbacks as mentioned above. Although there is
no explicit attempt in their approach to make all of the strongly connected
subsystems controllable and observable from a single controller, the generic
outcome of the first step of their approach will be precisely this situation.

After the early first phase of work of Wang and Davison [17] as well as
Corfmat and Morse [4], there has been a lot of second phase of work (see
[14, 13] and references there in) on how to construct the set of decentralized
controllers for a large scale system. These researchers view the given large scale
system such as Σ̄ of (3) as consisting of ν interconnected subsystems, the i-
th subsystem being controlled by the i-th controller Σi. Then, the research
in decentralized control is dominated by the point of view of considering the
interconnections between the subsystems essentially as disturbances, and then
using robust control theory to design strongly robust subsystems in such a way
that the effect of such disturbances is minimal. Essentially, the framework of
viewing the interconnections as disturbances is fundamentally flawed. Such
work belongs to the field of centralized robust control theory. In our opinion,
the decentralized control is still in its infancy, and is a very complex and open
field.
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4 Main results

In this section, we will present the necessary and sufficient conditions for semi-
global stabilizability of linear time invariant systems with actuator saturation
by utilizing a set of decentralized linear time invariant dynamic controllers.

We have the following theorem that pertains to necessary conditions, the
proof of which is given in Section 5.

Theorem 1. Consider the system Σ given by (1). There exists nonnegative
integers s1, . . . , sν such that for any given collection of compact sets W ⊂ R

n

and Si ⊂ R
si , i = 1, . . . ν, there exist ν controllers of the form (2) such that

the origin of the resulting closed loop system is asymptotically stable and the
domain of attraction includes W × S1 × · · · × Sν only if

• All decentralized fixed modes of Σ̄ given by (3) are in the open left half
complex plane, and

• All eigenvalues of A are in the closed left half plane.

The following theorem says that besides decentralized fixed modes being
in the open left half complex plane, a sufficient condition for semi-global sta-
bilizability of (1) when the set of controllers given by (2) are utilized is that
all the eigenvalues of A be in the closed left half plane with those eigenvalues
on the imaginary axis having algebraic multiplicity equal to one.

Theorem 2. Consider the system Σ given by (1). There exists nonnegative
integers s1, . . . , sν such that for any given collection of compact sets W ⊂ R

n

and Si ⊂ R
si , i = 1, . . . ν, there exist ν controllers of the form (2) such that

the origin of the resulting closed loop system is asymptotically stable and the
domain of attraction includes W × S1 × · · · × Sν if

• All decentralized fixed modes of Σ̄ given by (3) are in the open left half
complex plane, and

• All eigenvalues of A are in the closed left half plane with those eigenvalues
on the imaginary axis having algebraic multiplicity equal to one.

The above theorem is proved in Section 6. Our work done up to now con-
vinces us to state the following conjecture that the necessary conditions given
in Theorem 1 are also sufficient for semi-global stabilizability of decentralized
linear systems with actuator saturation.

Conjecture 1. Consider the system Σ given by (1). There exists nonnegative
integers s1, . . . , sν such that for any given collection of compact sets W ⊂ R

n

and Si ⊂ R
si , i = 1, . . . ν, there exist ν controllers of the form (2) such that

the origin of the resulting closed loop system is asymptotically stable and the
domain of attraction includes W × S1 × · · · × Sν if and only if

• All decentralized fixed modes of Σ̄ given by (3) are in the open left half
complex plane, and

• All eigenvalues of A are in the closed left half plane.
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5 Proof of Theorem 1

We prove Theorem 1 in this section. Assume that decentralized semi-global
stabilization of the given system Σ of (1) is possible. Then, the decentral-
ized stabilization of the linearized model Σ̄ of Σ as given in (3) is possible.
By the result of Wang and Davison [17], this implies that it is necessary to
have all the decentralized fixed modes of Σ̄ in the open left half complex
plane. However, we have a simple alternate proof of this fact as follows: Since
the linearized model needs to be asymptotically stable, there exists ν linear
controllers achieving locally an asymptotically stable system. We define the
following matrices for these ν controllers of the form (2):

K =

⎛
⎜⎜⎜⎜⎝

K1 0 · · · 0

0 K2
. . .

...
...

. . . . . . 0
0 · · · 0 Kν

⎞
⎟⎟⎟⎟⎠ , L =

⎛
⎜⎜⎜⎜⎝

L1 0 · · · 0

0 L2
. . .

...
...

. . . . . . 0
0 · · · 0 Lν

⎞
⎟⎟⎟⎟⎠ ,

M =

⎛
⎜⎜⎜⎜⎝

M1 0 · · · 0

0 M2
. . .

...
...

. . . . . . 0
0 · · · 0 Mν

⎞
⎟⎟⎟⎟⎠ , N =

⎛
⎜⎜⎜⎜⎝

N1 0 · · · 0

0 N2
. . .

...
...

. . . . . . 0
0 · · · 0 Nν

⎞
⎟⎟⎟⎟⎠ .

For any λ with Re λ ≥ 0 there exists a δ such that (λ + δ)I − K is invertible
and the closed loop system when replacing K by K −δI is still asymptotically
stable. But then the linearized model of the closed loop system cannot have
a pole at λ which implies that we must have that

det
(
λI − A − B

[
M(λI − (K − δI))−1L + N

]
C
) �= 0.

Hence the block diagonal matrix

S = M(λI − (K − δI))−1L + N

has the property that

det (λI − A − BSC) �= 0,

and thus λ is not a fixed mode of the system. Since this argument is valid for
any λ in the closed right half plane this implies that all the fixed modes must
be in the open left half plane. This proves the necessity of the first item of
Theorem 1.

To prove the necessity of the second item of Theorem 1, assume that λ
is an eigenvalue of A in the open right half plane with corresponding left
eigenvector p, i.e. pA = λp. Then we have

d
dt

px(t) = λpx(t) + v(t)
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where

v(t) :=
ν∑

i=1

pBi satui(t).

There clearly exists an M̃ > 0 such that ‖v(t)‖ ≤ M̃ for all t > 0. But then

|px(t)| >
∣∣eλt

∣∣ (|px(0)| − M̃

Re λ

)
+

M̃

Reλ

which does not converge to zero since Re λ ≥ 0, provided the initial condition
is such that

|px(0)| >
M̃

Re λ
.

Note that this is valid for all controllers and therefore we can clearly not
achieve semi-global stability.

6 Preliminary lemmas and proof of Theorem 2

We will use two lemmas. The first lemma given below is a well-known classical
result from Lyapunov theory.

Lemma 2. Consider a matrix A ∈ R
n×n, and assume that it has all its eigen-

values in the closed left half plane with those eigenvalues on the imaginary axis
having a geometric multiplicity equal to the algebraic multiplicity. Then, there
exists a matrix P > 0 such that

A′P + PA ≤ 0. (4)

Another useful tool is the following continuity result related to (4).

Lemma 3. Assume that we have a sequence of matrices Aδ ∈ R
n×n param-

eterized by δ and a matrix A ∈ R
n×n such that Aδ → A as δ → 0. Assume

that A has all its eigenvalues in the closed left half plane, and that there are p
distinct eigenvalues of A on the imaginary axis (i.e. there are p eigenvalues of
A on the imaginary axis each with algebraic multiplicity equal to 1). Moreover,
assume that Aδ also has all its eigenvalues in the closed left half plane. Let
P > 0 be such that (4) is satisfied. Then there exists for small δ > 0 a family
of matrices Pδ > 0 such that

A′
δPδ + PδAδ ≤ 0

and Pδ → P as δ → 0.

This text diffe
rs fro

m the actual publication
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Proof. We first observe that there exists a matrix S such that

S−1AS =
(

A11 0
0 A22

)
,

and such that all the eigenvalues of A11 are on the imaginary axis while A22

has all its eigenvalues in the open left half plane. Since A11 and A22 have
no common eigenvalues and Aδ → A, there exists a parameterized matrix Sδ

such that for δ sufficiently small

S−1
δ AδSδ =

(
A11,δ 0

0 A22,δ

)

where Sδ → S, A11,δ → A11 and A22,δ → A22 as δ → 0. This follows from
classical results on the sensitivity of invariant subspaces (see for instance [9,
5]).

Given is a matrix P > 0 such that A′P + PA ≤ 0. Let us define

P̄ = S′PS =
(

P̄11 P̄12

P̄ ′
12 P̄22

)
.

Obviously, we note that(
A′

11 0
0 A′

22

)
P̄ + P̄

(
A11 0
0 A22

)
≤ 0. (5)

Next, given an eigenvector x1 such that A11x1 = λx1 with Re λ = 0, we
have(

x1

0

)∗ [(
A′

11 0
0 A′

22

)
P̄ + P̄

(
A11 0
0 A22

)](
x1

0

)
= 0.

Using (5), the above implies that[(
A′

11 0
0 A′

22

)
P̄ + P̄

(
A11 0
0 A22

)](
x1

0

)
= 0.

Since all the eigenvalues on the imaginary axis of A11 ∈ R
v×v are distinct we

find that the eigenvectors of A11 span R
v and hence[(

A′
11 0
0 A′

22

)
P̄ + P̄

(
A11 0
0 A22

)](
I
0

)
= 0.

This leads to(
A′

11 0
0 A′

22

)
P̄ + P̄

(
A11 0
0 A22

)
=
(

0 0
0 V

)
≤ 0.

This immediately implies that A′
11P̄12 + P̄12A22 = 0 and since A11 and A22

have no eigenvalues in common we find that P̄12 = 0. Thus, we have
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12 Stoorvogel, Saberi, Deliu and Sannuti

A′
11P̄11 + P̄11A11 = 0 and A′

22P̄22 + P̄22A22 = V ≤ 0.

Next, since A22 has all its eigenvalues in the open left half plane, there exists
a parameterized matrix P22,δ for δ small enough such that

A′
22,δP̄22,δ + P̄22,δA22,δ = V ≤ 0

while P̄22,δ → P22 as δ → 0.
Let A11 = WΛAW−1 with ΛA a diagonal matrix. Because the eigenvectors

of A11 are distinct and A11,δ → A11, for δ small enough the eigenvectors of
A11,δ depend continuously on δ and hence there exists a parameterized matrix
Wδ such that Wδ → W while A11,δ = WδΛAδ

W−1
δ with ΛAδ

diagonal. The
matrix P̄11 satisfies

A∗
11P̄11 + P̄11A11 = 0

This implies that ΛP = W ∗P̄11W satisfies

Λ∗
AΛP + ΛP ΛA = 0.

The above equation then shows that ΛP is a diagonal matrix. We know that

ΛAδ
→ ΛA.

We know that ΛAδ
is a diagonal matrix whose diagonal elements have real

part less than or equal to zero while ΛP is a positive-definite diagonal matrix.
Using this, it can be verified that we have

Λ∗
Aδ

ΛP + ΛP ΛAδ
≤ 0.

We choose P̄11,δ as

P̄11,δ = (W ∗
δ )−1ΛP W−1

δ .

Obviously, our choice of P̄11,δ satisfies

A∗
11,δP̄11,δ + P̄11,δA11,δ ≤ 0.

We observe that P̄11,δ → P̄11 as δ → 0. But then

Pδ = (S−1
δ )′

(
P̄11,δ 0

0 P̄22,δ

)
S−1

δ

satisfies the conditions of the lemma. This completes the proof of Lemma 3.

We proceed now with the proof of Theorem 2. Our proof is constructive
and involves a sequential design. We present a recursive algorithm which at
each step applies a decentralized feedback law which stabilizes at least one
eigenvalue on the imaginary axis while preserving the stability of the stable
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Decentralized control with input saturation 13

modes of the system in such a way that the magnitude of each decentralized
feedback control is guaranteed never to exceed 1/n. Therefore, after at most n
steps the combination of these decentralized feedback laws will asymptotically
stabilize the system without ever violating the magnitude constraints of each
of the inputs. The basic steps of the algorithm are as formalized below:

Algorithm:

• Step 0 (Initialization): We first initialize our algorithm at step 0. To
do so, let A0 := A, B0,i := Bi, C0,i := Ci, ni,0 := 0, N0

i,ε := 0, i = 1, . . . , ν
and x0 := x. Moreover, define P ε

0 := εP , where P > 0 is a matrix such
that

A′P + PA ≤ 0.

Since all the eigenvalues of A on the imaginary axis have multiplicity 1,
we know from Lemma 2 that such a matrix P exists.

• Step k:
For the system Σ given by (3), we have to design ν parameterized decen-
tralized feedback control laws,

Σk,ε
i :

{
ṗk

i = Kk
i,εp

k
i + Lk

i,εyi, pk
i ∈ R

ni,k

ui = Mi,εp
k
i + Nk

i,εyi + vk
i

(6)

in case ni,k > 0, and otherwise

Σk,ε
i :

{
ui = Nk

i,εyi + vk
i , (7)

for i = 1, . . . , ν. The closed-loop system comprising the above decentralized
feedback control laws and the system Σ of (1) can be written as

Σk,ε
cl :

⎧⎪⎨
⎪⎩

ẋk = Aε
kxk +

ν∑
i=1

Bk,iv
k
i

yi = Ck,ixk, i = 1, . . . , ν,

(8)

where xk ∈ R
nk with nk = n +

∑ν
i=1 ni,k is given by

xk =

⎛
⎜⎜⎜⎝

x
pk
1
...

pk
ν

⎞
⎟⎟⎟⎠ . (9)

In view of (9), we can rewrite ui as

ui = F k
i,εxk + vk

i

for some appropriate matrix F k
i,ε.

The above decentralized feedback control laws given by either (6) or (7)
are to be designed in such a way that they satisfy the following properties:
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14 Stoorvogel, Saberi, Deliu and Sannuti

1) The matrix Aε
k has all its eigenvalues in the closed-left half plane, and

those eigenvalues of Aε
k which are on the imaginary axis are distinct.

2) The number of eigenvalues of Aε
k on the imaginary axis must at least

be one less than the number of eigenvalues of Aε
k−1 on the imaginary

axis (i.e. at each step of our recursive algorithm we design a decentral-
ized feedback law which stabilizes at least one more eigenvalue on the
imaginary axis while preserving the stability of the stable modes of the
system designed until then).

3) There exists a family of matrices P ε
k such that P ε

k → 0 as ε → 0 while
for vk

i = 0, i = 1, . . . , ν, the closed-loop system Σk,ε
cl of (8) is such that

xk(t)′P ε
kxk(t)

is non-increasing in t for all initial conditions, i.e.

(Aε
k)′P ε

k + P ε
k Aε

k ≤ 0. (10)

Moreover, there exists an ε∗ such that for all ε ∈ (0, ε∗] we have

‖ui(t)‖ ≤ k

n
(11)

for all states with xk(t)′P ε
kxk(t) ≤ n − k + 1.

It is easy to verify that all of the above conditions are true for k = 0.
• Terminal step:

There exists a value for k, say 	 ≤ n, such that the matrix Aε
� has all

its eigenvalues in the open-left half plane. We set v�
i = 0 for i = 1, . . . , 	.

The decentralized control laws Σ�,ε
i , i = 1, . . . , 	 as given by (6) or (7),

all together, represent a decentralized semi-global state feedback law for
the given system Σ of (1). More precisely, for any given compact sets
W ⊂ R

n, and Si ⊂ R
ni,� for i = 1, . . . ν, there exists an ε∗ such that

the origin of the closed-loop system comprising the given system Σ of
(1) and the decentralized control laws Σ�,ε

i , i = 1, . . . , 	 as given by (6)
or (7) is exponentially stable for any 0 < ε < ε∗, and the compact set
W ×S1 × · · ·×Sν is within the domain of attraction. Moreover, for all the
initial conditions within W × S1 × · · · × Sν , the said closed-loop system
behaves like a linear dynamic system, that is the saturation is not activated
implying that ‖ui‖ < 1 for all i = 1, . . . , ν.
The fact that the decentralized control laws Σ�,ε

i , i = 1, . . . , 	 as given
by (6) or (7) are semi-globally stabilizing follows from the property 3) as
given in step k of the above algorithm. To be explicit, we observe that, for
an ε sufficiently small, the set

Ωε
1 := {x� ∈ R

n� |x′
�P

ε
� x� ≤ 1}

is inside the domain of attraction of the equilibrium point of the closed-
loop system comprising the given system Σ of (1) and the decentralized

This text diffe
rs fro

m the actual publication



Decentralized control with input saturation 15

control laws Σ�,ε
i , i = 1, . . . , 	 as given by (6) or (7). This follows from the

fact that for all the initial conditions within Ωε
1 , it is obvious from (11)

that ‖ui‖ ≤ 1 for all i = 1, . . . , ν. This implies that the said closed-loop
system behaves like a linear dynamic system, that is the saturation is not
activated. Moreover, this linear dynamic system is asymptotically stable
since Aε

� has all its eigenvalues in the open left half plane, and hence the
state converges to zero asymptotically.
Next, since P ε

� → 0 as ε → 0, for an ε sufficiently small, we have that
the compact set W × S1 × · · · × Sν is inside Ωε

1 . This concludes that the
decentralized control laws Σ�,ε

i , i = 1, . . . , 	 as given by (6) or (7) are
semi-globally stabilizing.

This completes the description of our recursive algorithm to design the
decentralized feedback control laws having the properties as given in Theorem
2.

It remains to prove that the above recursive algorithm succeeds in design-
ing the decentralized feedback control laws having the properties as given in
Theorem 2. In order to do so, we assume that the design of decentralized
feedback control laws as described in step k can be done, and then prove that
the corresponding design in step k + 1 can be done. We proceed now to prove
this.

After step k we have for the system Σ of (1), ν feedback control laws
of the form (6) or (7) such that the system (8) obtained after applying these
feedbacks has the properties 1), 2) and 3). We consider the closed-loop system
Σk,ε

cl of (8). Let λ be an eigenvalue on the imaginary axis of Aε
k. We know

that decentralized feedback laws do not change the fixed modes and therefore,
since λ was not a fixed mode of the original system (1), it is not a fixed mode
of the system (8) obtained after applying ν feedback laws either. Hence there
exists a K̄i such that

Aε
k +

ν∑
i=1

Bk,iK̄iCk,i

has no eigenvalue at λ. Therefore,

Aε
k + δ

ν∑
i=1

Bk,iK̄iCk,i

has no eigenvalue at λ for almost all δ > 0 (the determinant of λI − Aε
k −

δ
∑ν

i=1 Bk,iK̄iCk,i is a polynomial in δ and is nonzero for δ = 1 and therefore
the determinant has a finite number of zeros).

Let j be the largest integer such that

Aε,δ
k = Aε

k + δ

j∑
i=1

Bk,iK̄iCk,i
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16 Stoorvogel, Saberi, Deliu and Sannuti

has λ as an eigenvalue and the same number of eigenvalues on the imaginary
axis as Aε

k for δ > 0 small enough. This implies that Aε,δ
k still has all its

eigenvalues in the closed left half plane for δ small enough.
We know that (10) is satisfied and hence using Lemma 3 we find that there

exists a P̄ ε,δ
k such that

(Aε,δ
k )′P̄ ε,δ

k + P̄ ε,δ
k Aε,δ

k ≤ 0

while P̄ ε,δ
k → P ε

k as δ → 0. Hence for δ small enough

x′
kP̄ ε,δ

k xk ≤ n − k + 1
2 =⇒ x′

kP ε
kxk ≤ n − k + 1 (12)

and for δ small enough we have that

‖δK̄ixk‖ ≤ 1
2n for all xk with x′

kP ε
k xk ≤ n − k + 1. (13)

For each ε choose δ = δε small enough such that the above two properties
(12) and (13) are satisfied. We define Kε

i = δεK̄i, P̄ ε
k = P̄ ε,δε

k and

Āε
k := Aε

k +
j∑

i=1

Bk,iK
ε
i Ck,i.

By the definition of j, we know that

Aε
k +

j+1∑
i=1

Bk,iK
ε
i Ck,i (14)

either no longer has λ as an eigenvalue while λ is an eigenvalue of Āε
k or this

matrix (14) has less eigenvalues on the imaginary axis than Āε
k. In either case

we can conclude that

(Āε
k, Bk,j+1, Ck,j+1)

has a stabilizable and detectable eigenvalue on the imaginary axis. Choose V
such that

V V ′ = I and kerV = 〈kerCk,j+1 | Āε
k〉.

We choose the following decentralized feedback law,

vk
i = Kε

i xk + vk+1
i , i = 1, . . . , j , (15)

ṗ = Aε
sp + V Bk,j+1v

k
j+1 + K(Ck,j+1V

′p − yj+1)
vk

j+1 = Fρp + vk+1
j+1

(16)

vk
i = vk+1

i , i = j + 2, . . . , ν. (17)
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Decentralized control with input saturation 17

Equations (15), (16), and (17) together represent our decentralized feedback
control laws at step k +1. Here p ∈ R

s and Aε
s is such that Aε

sV = V Āε
k while

K is chosen such that Aε
s + KCk,j+1V

′ has all its eigenvalues in the open
left half plane while Aε

s +KCk,j+1V
′ and Āε

k have no eigenvalues in common.
Moreover, for all ρ the matrix Āε

k + Bk,j+1FρV has at least one eigenvalue
less on the imaginary axis than Aε

k does, and still has all its eigenvalues in the
closed left half plane while Fρ → 0 as ρ ↓ 0. Rewriting the resulting system in
a new basis consisting of xk and p − V xk results in

˙̄xk+1 =
(

Āε
k + Bk,j+1FρV Bk,j+1Fρ

0 Aε
s + KCk,j+1V

′

)
x̄k+1 +

ν∑
i=1

B̄k+1,iv
k+1
i

yi = C̄k+1,ix̄k+1, i = 1, . . . , ν,

(18)

where

B̄k+1,i =
(

Bk,i

−V Bk,i

)
, C̄k+1,i =

(
Ck,i 0

)
for i �= j + 1 while

B̄k+1,j+1 =
(

Bk,j+1

0

)
, C̄k+1,j+1 =

(
Ck,j+1 0

V I

)

and

x̄k+1 =
(

xk

p − V xk

)
.

Obviously, the above feedback laws (15), (16), and (17) satisfy at step k + 1
the properties 1), and 2) as mentioned in step k. What remains to show is
that they also satisfy property 3). Moreover, we need to write the control laws
(15), (16), and (17) in the form of (6) or (7) for step k + 1. In what follows
we focus on these aspects.

For any ε there exists a Rε
k > 0 with

(Aε
s + KCk,j+1V

′)′Rε
k + Rε

k(Aε
s + KCk,j+1V

′) < 0

such that Rε
k → 0 as ε ↓ 0. Since Fρ → 0 as ρ → 0, for each ε we have for ρ

small enough

‖Fρe‖ < 1
2n for all e such that e′Rε

ke ≤ n − k + 1
2 (19)

where e = p − V xk.
We have that Āε

k + Bk,j+1FρV is a perturbation of Āε
k, but it has at

least one eigenvalue less on the imaginary axis than Āε
k while having all its

eigenvalues in the closed left half plane. But then, using Lemma 3, for ρ small
there exists a matrix P̄ ε

ρ > 0 such that
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18 Stoorvogel, Saberi, Deliu and Sannuti

(Āε
k + Bk,j+1FρV )′P̄ ε

ρ + P̄ ε
ρ (Āε

k + Bk,j+1FρV ) ≤ 0

with P̄ ε
ρ → P̄ ε

k as ρ → 0.
Finally because Āε

k and Aε
s +KCk,j+1V

′ have disjoint eigenvalues we note
that for ρ small enough we get that Āε

k + Bk,j+1FρV and Aε
s + KCk,j+1V

′

have disjoint eigenvalues since Fρ → 0 as ρ ↓ 0. But then there exists a Wε,ρ

such that

Bk,j+1Fρ + (Āε
k + Bk,j+1FρV )Wε,ρ − Wε,ρ(Aε

s + KCk,j+1V
′) = 0

while Wε,ρ → 0 as ρ ↓ 0. Note that this implies that

P̄ ε,ρ
k+1 =

(
I 0

−W ′
ε,ρ I

)(
P̄ ε

ρ 0
0 Rε

k

)(
I −Wε,ρ

0 I

)

has the property that:

(Āε,ρ
k+1)

′P̄ ε,ρ
k+1 + P̄ ε,ρ

k+1Ā
ε,ρ
k+1 ≤ 0 (20)

for

Āε,ρ
k+1 =

(
Āε

k + Bk,j+1FρV Bk,j+1Fρ

0 Aε
s + KCk,j+1V

′

)

and

lim
ρ↓0

P̄ ε,ρ
k+1 =

(
P̄ ε

k 0
0 Rε

k

)
.

We consider x̄k+1 such that

x̄′
k+1P̄

ε,ρ
k+1x̄k+1 ≤ n − k. (21)

Then we can choose ρ small enough such that

x′
kP̄ ε

kxk ≤ n − k + 1
2 and (p − V xk)′Rε

k(p − V xk) ≤ n − k + 1
2 . (22)

We choose for each ε a ρ = ρε such that (19) is satisfied while (21) implies
that (22) is satisfied and finally

‖FρV xk‖ < 1
2n for all xk such that x′

kP̄ ε
kxk ≤ n − k + 1

2 .

In order to establish that the bounds on the inputs are satisfied in step k +1,
we set vk+1

i = 0 for i = 1, . . . ν. Then, we obtain for i = 1, . . . , j,

‖ui(t)‖ = ‖F k
i,εxk + Kε

i xk‖ ≤ k
n + 1

2n ≤ k+1
n

for all x̄k+1 such that (21) is satisfied. For i = j + 1 we obtain,
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Decentralized control with input saturation 19

‖ui(t)‖ = ‖F k
i,εxk + Fρεp‖

= ‖F k
i,εxk − FρεV xk + Fρε(p − V xk)‖ ≤ k

n + 1
2n + 1

2n = k+1
n .

Finally for i = j + 2, . . . , ν, we obtain

‖ui(t)‖ = ‖F k
i,εxk‖ ≤ k

n ≤ k+1
n .

We now focus on rewriting the decentralized control laws (15), (16), and
(17) in the form of (6) or (7) for step k + 1. We set ni,k+1 = ni,k for i �= j + 1
while for i = j + 1 we set ni,k+1 = ni,k + s and

pk+1
i =

(
pk

i

p

)
or pk+1

i = p

in case ni,k > 0 or ni,k = 0 respectively. We can then rewrite the system (18)
in terms of the state xk+1 (defined by (9)) instead of x̄k+1 which requires a
basis transformation Tk+1, i.e. x̄k+1 = Tk+1xk+1. We define

P ε
k+1 = T ′

k+1P̄
ε,ρε

k+1 Tk+1

and obviously, for i = 1, . . . , ν, we can write the relationship between yi, vk+1
i

and ui in the form (6) or (7) depending on whether ni,k+1 = 0 or not. We can
now rewrite the control laws (15), (16), and (17) in the form

Σk+1,ε
i :

{
ṗk+1

i = Kk+1
i,ε pk+1

i + Lk+1
i,ε yi, pk+1

i ∈ R
ni,k+1

ui = Mi,εp
k+1
i + Nk+1

i,ε yi + vk+1
i

(23)

in case ni,k+1 > 0, and otherwise

Σk+1,ε
i :

{
ui = Nk+1

i,ε yi + vk+1
i , (24)

for i = 1, . . . , ν. It is then clear that properties 1), 2) and 3) are satisfied in
step k + 1.

This concludes the proof of Theorem 2.
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