212 research outputs found
Simultaneous flow of water and air across the land surface during runoff
This paper presents an inter-compartment boundary condition for the simulation
of surface runoff, soil moisture, and soil air as a coupled system of partial differential
equations. The boundary condition is based on a classic leakance approach to balance
water between differently mobile regions such as the land surface and subsurface. Present
work applies leakances to transfer water and air simultaneously through the land surface
for soils, which are connected by an air flux with a steady atmosphere. Shallow flow and
two phase flow in a porous medium are sequential calculated in an iteration loop. General
criteria are stated to guarantee numerical stability in the coupling loop and for leakances
to control inter-compartment fluid fluxes. Using the leakance approach, a numerical model
captures typical feedbacks between surface runoff and soil air in near-stream areas. Specifically,
displacement of water and air in soils is hampered at full-water saturation over the
land surface resulting in enhanced surface runoff in the test cases. Leakance parameters
permit the simulation of air out-breaks with reference to air pressures, which fluctuate in
the shallow subsurface between two thresholds
Ground state properties of antiferromagnetic Heisenberg spin rings
Exact ground state properties of antiferromagnetic Heisenberg spin rings with
isotropic next neighbour interaction are presented for various numbers of spin
sites and spin quantum numbers. Earlier work by Peierls, Marshall, Lieb,
Schultz and Mattis focused on bipartite lattices and is not applicable to rings
with an odd number of spins. With the help of exact diagonalization methods we
find a more general systematic behaviour which for instance relates the number
of spin sites and the individual spin quantum numbers to the degeneracy of the
ground state. These numerical findings all comply with rigorous proofs in the
cases where a general analysis could be carried out. Therefore it can be
plausibly conjectured that the ascertained properties hold for ground states of
arbitrary antiferromagnetic Heisenberg spin rings.Comment: 13 pages, 5 figures, uses epsfig.sty, submitted to Phys. Rev. B. More
information at http://www.physik.uni-osnabrueck.de/makrosysteme
Proton Spin Relaxation Induced by Quantum Tunneling in Fe8 Molecular Nanomagnet
The spin-lattice relaxation rate and NMR spectra of H in
single crystal molecular magnets of Fe8 have been measured down to 15 mK. The
relaxation rate shows a strong temperature dependence down to 400
mK. The relaxation is well explained in terms of the thermal transition of the
iron state between the discreet energy levels of the total spin S=10. The
relaxation time becomes temperature independent below 300 mK and is
longer than 100 s. In this temperature region stepwise recovery of the
H-NMR signal after saturation was observed depending on the return field of
the sweep field. This phenomenon is attributed to resonant quantum tunneling at
the fields where levels cross and is discussed in terms of the Landau-Zener
transition.Comment: 13 pages, 5 figure
Heisenberg exchange parameters of molecular magnets from the high-temperature susceptibility expansion
We provide exact analytical expressions for the magnetic susceptibility
function in the high temperature expansion for finite Heisenberg spin systems
with an arbitrary coupling matrix, arbitrary single-spin quantum number, and
arbitrary number of spins. The results can be used to determine unknown
exchange parameters from zero-field magnetic susceptibility measurements
without diagonalizing the system Hamiltonian. We demonstrate the possibility of
reconstructing the exchange parameters from simulated data for two specific
model systems. We examine the accuracy and stability of the proposed method.Comment: 13 pages, 7 figures, submitted to Phys. Rev.
High frequency resonant experiments in Fe molecular clusters
Precise resonant experiments on Fe magnetic clusters have been
conducted down to 1.2 K at various tranverse magnetic fields, using a
cylindrical resonator cavity with 40 different frequencies between 37 GHz and
110 GHz. All the observed resonances for both single crystal and oriented
powder, have been fitted by the eigenstates of the hamiltonian . We have identified the
resonances corresponding to the coherent quantum oscillations for different
orientations of spin S = 10.Comment: to appear in Phys.Rev. B (August 2000
Characterization of the S = 9 excited state in Fe8Br8 by Electron Paramagnetic Resonance
High Frequency electron paramagnetic resonance has been used to observe the
magnetic dipole, M = 1, transitions in the excited
state of the single molecule magnet FeBr. A Boltzmann analysis of the
measured intensities locates it at 24 2 K above the ground
state, while the line positions yield its magnetic parameters D = -0.27 K, E =
0.05 K, and B = -1.3 10 K. D is thus smaller by 8%
and E larger by 7% than for . The anisotropy barrier for is
estimated as 22 K,which is 25% smaller than that for (29 K). These
data also help assign the spin exchange constants(J's) and thus provide a basis
for improved electronic structure calculations of FeBr.Comment: 7 pages, Figs included in text, submitted to PR
Nuclear spin-lattice relaxation in ferrimagnetic clusters and chains: A contrast between zero and one dimensions
Motivated by ferrimagnetic oligonuclear and chain compounds synthesized by
Caneschi et al., both of which consist of alternating manganese(II) ions and
nitronyl-nitroxide radicals, we calculate the nuclear spin-lattice relaxation
rate 1/T_1 employing a recently developed modified spin-wave theory. 1/T_1 as a
function of temperature drastically varies with the location of probe nuclei in
both clusters and chains, though the relaxation time scale is much larger in
zero dimension than in one dimension. 1/T_1 as a function of an applied field
in long chains forms a striking contrast to that in finite clusters, diverging
with decreasing field like inverse square root at low temperatures and
logarithmically at high temperatures.Comment: to be published in Phys. Rev. B 68 August 01 (2003
Calculating the energy spectra of magnetic molecules: application of real- and spin-space symmetries
The determination of the energy spectra of small spin systems as for instance
given by magnetic molecules is a demanding numerical problem. In this work we
review numerical approaches to diagonalize the Heisenberg Hamiltonian that
employ symmetries; in particular we focus on the spin-rotational symmetry SU(2)
in combination with point-group symmetries. With these methods one is able to
block-diagonalize the Hamiltonian and thus to treat spin systems of
unprecedented size. In addition it provides a spectroscopic labeling by
irreducible representations that is helpful when interpreting transitions
induced by Electron Paramagnetic Resonance (EPR), Nuclear Magnetic Resonance
(NMR) or Inelastic Neutron Scattering (INS). It is our aim to provide the
reader with detailed knowledge on how to set up such a diagonalization scheme.Comment: 29 pages, many figure
When is a test not a proof?
A common primitive in election and auction protocols is plaintext equivalence test (PET) in which two ciphertexts are tested for equality of their plaintexts, and a verifiable proof of the test\u27s outcome is provided. The most commonly-cited PETs require at least one honest party, but many applications claim universal verifiability, at odds with this requirement. If a test that relies on at least one honest participant is mistakenly used in a place where universally verifiable proof is needed, then a collusion by all participants can insert a forged proof of equality into the tallying transcript. We show this breaks universal verifiability for the JCJ/Civitas scheme among others, because the only PETs they reference are not universally verifiable. We then demonstrate how to fix the problem
Contribution of limbic norepinephrine to cannabinoid-induced aversion
RATIONALE:
The cannabinoid system has risen to the forefront in the development of novel treatments for a number of pathophysiological processes. However, significant side effects have been observed in clinical trials raising concerns regarding the potential clinical utility of cannabinoid-based agents. Understanding the neural circuits and neurochemical substrates impacted by cannabinoids will provide a better means of gaging their actions within the central nervous system that may contribute to the expression of unwanted side effects.
OBJECTIVES:
In the present study, we investigated whether norepinephrine (NE) in the limbic forebrain is a critical determinant of cannabinoid receptor agonist-induced aversion and anxiety in rats.
METHODS:
An immunotoxin lesion approach was combined with behavioral analysis using a place conditioning paradigm and the elevated zero maze.
RESULTS:
Our results show that the non-selective CB1/CB2 receptor agonist, WIN 55,212-2, produced a significant place aversion in rats. Further, NE in the nucleus accumbens was critical for WIN 55,212-2-induced aversion but did not affect anxiety-like behaviors. Depletion of NE from the bed nucleus of the stria terminalis was ineffective in altering WIN 55,212-2-induced aversion and anxiety.
CONCLUSIONS:
These results indicate that limbic, specifically accumbal, NE is required for cannabinoid-induced aversion but is not essential to cannabinoid-induced anxiety.This works was supported by PHS grant DA 020129. Ana Franky Carvalho was supported by the Portuguese Foundation for Science and Technology (SFRH/BD/33236/2007)
- …