7 research outputs found

    Effect of biomass adaptation to the degradation of anionic surfactants in laundry wastewater using EGSB reactors

    Get PDF
    AbstractTwo expanded granular sludge bed reactors were operated. RAB (adapted biomass) was operated in two stages: Stage I, with standard LAS (13.2mgL−1); and Stage II, in which the standard LAS was replaced by diluted laundry wastewater according to the LAS concentration (11.2mgL−1). RNAB (not adapted biomass) had a single stage, using direct wastewater (11.5mgL−1). Thus, the strategy of biomass adaptation did not lead to an increase of surfactant removal in wastewater (RAB-Stage II: 77%; RNAB-Stage I: 78%). By means of denaturing gradient gel electrophoresis, an 80% similarity was verified in the phases with laundry wastewater (sludge bed) despite the different reactor starting strategies. By pyrosequencing, many reads were related to genera of degraders of aromatic compounds and sulfate reducers (Syntrophorhabdus and Desulfobulbus). The insignificant difference in LAS removal between the two strategies was most likely due to the great microbial richness of the inoculum

    Microaerated UASB reactor treating textile wastewater: the core microbiome and removal of azo dye direct black 22

    No full text
    Sequential anaerobic and aerobic processes have been recommended to treat textile wastewater reliably. In this work, the focus was on finding an energetically more competitive system to remove tetra-azo dye Direct Black 22 (DB22). We operated two upflow anaerobic sludge blanket (UASB) reactors (R1 and R2) in three phases (PI, PII, and PIII). R1 was operated as a conventional UASB, while R2 was microaerated in the upper part (0.18 ± 0.05 mg O2. L−1), aiming to remove DB22 simultaneously with the aromatic amine byproducts. PI consisted of feeding reactors with synthetic textile wastewater (STW), PII had higher salinity in the STW, and PIII was the same as PII, plus sulfate. The results showed that color and COD removal efficiencies were similar for both reactors (67–72% for R1 and 59–78% for R2) without a substantial influence of oxygen in R2. However, microaeration played a crucial role in R2 by removing the anaerobically formed aromatic amines; during PIII, the effluent was 16 times less toxic than that of R1. The microbial community that developed in the sludge bed of both reactors was quite similar, with the core microbiome represented by Trichococcus, Syntrophus and Methanosaeta genera. The increase in salinity in PII and PIII promoted a shift in the microbial community, excluding salty-sensitive genera from the core microbiome. The putative genera Brevundimonas and Ornatilinea were associated to aromatic amine microaerobic removal. Therefore, there is a potential application of a compact microaerated anaerobic system for textile wastewater treatment24

    In-depth assessment of microbial communities in the full-scale vertical flow treatment wetlands fed with raw domestic wastewater

    No full text
    International audienceA multiphase study was proposed to examine microbial communities linked to the nitrogen cycle in the first stage of four full-scale French vertical flow treatment systems. To this end, denaturing gradient gel electrophoresis (DGGE) was performed for structural assessment and quantitative PCR (qPCR) to enumerate the abundance of ammonia-oxidizing (AOB). 16S rRNA sequencing was used to assess the taxonomic profile followed by putative assessment of functional genes. The samples were collected under different conditions, such as operational time (presence/absence of sludge layer on the surface of the filters), season (winter and summer), sampling depth (0, 15 and 30 cm) and operation cycle (rest and feed periods). A structural disparity was noted in the upper layers, whereas higher similarity at 30 cm was observed highlighting the effect of organic matter on bacterial diversity. The 7th rest day was highlighted by an apparent decline in the microbial community abundance. Additionally, qPCR indicated that the largest amount of AOB was found at 30 cm depth and during the feeding period. From the taxonomic profile, Mycobacterium, Acinetobacter, Flavobacterium, and Nitrospira were the most abundant genre found in all systems. The functional prediction results showed predicted genes linked to the denitrification process. The results suggested that operating time and season were responsible for the pattern of the microbial community behavior. This study allowed us to further understand the bacterial dynamics and to advance the idea of design modifications made in the first stage of the classical French system to improve nitrogen removal are promising

    Anaerobic reactor applied to laundry wastewater treatment : unveiling the microbial community by gene and genome-centric approaches

    No full text
    Gene and genome-centric approaches were applied to investigate the microbial taxonomic and metabolic diversity profiles from a lab-scale anaerobic reactor applied to laundry wastewater treatment with increasing concentrations of linear alkylbenzene sulfonate (LAS). Therefore, metagenomic analysis was carried out with reactor samples collected under three conditions, (i) Stage I, the reactor was fed with synthetic medium, (ii) Stage II, synthetic medium was replaced by diluted laundry wastewater with specific LAS loading rates (SLLRs) of 1.0 ± 0.3 mgLASgTVS−1d−1 and (iii) Stage III, SLLRs increased to 2.7 ± 0.7 mgLASgTVS−1d−1. Shotgun metagenomic sequencing was performed on an Illumina HiSeq 2 × 150 bp platform. Gene-centric analysis of each step of the metabolic pathway (fumarate addition, ÎČ-oxidation, ring cleavage and desulfonation) for anaerobic aromatic degradation showed eight over-representative genera (Achromobacter, Pelodictyon, Pseudomonas, Psychrobacter, Rhodococcus, Stenotrophomonas, Sulfurovum and Syntrophobacter), suggesting a microbial core with an important role in LAS biodegradation. Some of these genera were also recovered through a differential binning method, representing fifteen bacterial and one archaeal metagenome-assembled genomes (MAGs). Biodegradation pathway reconstruction of LAS using six MAGs unveiled the syntrophism for complete degradation of the LAS molecule. Only the MAGs with taxonomic annotation for Syntrophobacter showed genetic potential for fumarate addition, whereas in the ring cleavage, there was a predominance of genes in MAGs with taxonomic annotation for Pseudomonas fragi and Rhodococcus. This work represents the first report of genome-centric approach to study biological reactors applied in anionic surfactant degradation, contributing with detailed metabolic information of the key microbial actors in LAS degradation and opening perspectives for future biotechnological strategies aiming at bioaugmentation and/or biostimulation of indigenous microbial populations149COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP0012014/16426–0; 2015/06246–
    corecore