3 research outputs found

    Nonequilibrium dynamics of a stochastic model of anomalous heat transport: numerical analysis

    Full text link
    We study heat transport in a chain of harmonic oscillators with random elastic collisions between nearest-neighbours. The equations of motion of the covariance matrix are numerically solved for free and fixed boundary conditions. In the thermodynamic limit, the shape of the temperature profile and the value of the stationary heat flux depend on the choice of boundary conditions. For free boundary conditions, they also depend on the coupling strength with the heat baths. Moreover, we find a strong violation of local equilibrium at the chain edges that determine two boundary layers of size N\sqrt{N} (where NN is the chain length), that are characterized by a different scaling behaviour from the bulk. Finally, we investigate the relaxation towards the stationary state, finding two long time scales: the first corresponds to the relaxation of the hydrodynamic modes; the second is a manifestation of the finiteness of the system.Comment: Submitted to Journal of Physics A, Mathematical and Theoretica

    A stochastic model of anomalous heat transport: analytical solution of the steady state

    Full text link
    We consider a one-dimensional harmonic crystal with conservative noise, in contact with two stochastic Langevin heat baths at different temperatures. The noise term consists of collisions between neighbouring oscillators that exchange their momenta, with a rate γ\gamma. The stationary equations for the covariance matrix are exactly solved in the thermodynamic limit (N→∞N\to\infty). In particular, we derive an analytical expression for the temperature profile, which turns out to be independent of γ\gamma. Moreover, we obtain an exact expression for the leading term of the energy current, which scales as 1/γN1/\sqrt{\gamma N}. Our theoretical results are finally found to be consistent with the numerical solutions of the covariance matrix for finite NN.Comment: Minor changes in the text. To appear in Journal of Physics
    corecore