23 research outputs found

    Interaction of antithrombin III with surface-immobilized albumin-heparin conjugates

    Get PDF
    The interaction between antithrombin III (ATIII) and albumin-heparin conjugates covalently coupled onto carboxylated polystyrene beads either in buffer containing albumin or in plasma was studied using 14C-labeled ATIII. Binding isotherms of ATIII were modeled using a summation of two Langmuir equations. These equations describe the binding of ATIII to two different sets of binding sites, one with a high, the other with a low affinity for ATIII. The average binding constants for the binding of ATIII to these sites are 9 × 106 L/mol and 0.3 × 106 L/mol, respectively. The binding of ATIII to surface binding sites with a high affinity for ATIII was correlated with the presence of specific ATIII binding sites in the immobilized heparin. Binding of ATIII from albumin solutions to binding sites with a low affinity for ATIII was dominated by nonspecific binding of ATIII to the immobilized heparin. A third small fraction of the surface bound ATIII is probably adsorbed to sites on the surface not covered with heparin. In the case of the binding of ATIII to the heparinized surface from plasma solutions, a fraction of initially adsorbed ATIII was desorbed by other plasma proteins. This desorption in combination with direct competition between ATIII and other plasma proteins resulted in lower ATIII surface concentrations using plasma as compared to the ATIII surface concentrations obtained using albumin solutions. The binding of ATIII to nonspecific binding sites was almost completely inhibited in the presence of plasma proteins. The amount of ATIII bound to immobilized heparin via specific ATIII binding sites was 30% lower in plasma solutions as compared to the specific binding of ATIII using albumin solutions. It is concluded that the accessibility of immobilized heparin for ATIII in plasma decreases by binding of heparin-binding proteins onto the immobilized heparin and/or by adsorption of other plasma proteins on the heparinized surface

    Interaction of antithrombin III with surface-immobilized albumin-heparin conjugates

    Get PDF
    The interaction between antithrombin III (ATIII) and albumin-heparin conjugates covalently coupled onto carboxylated polystyrene beads either in buffer containing albumin or in plasma was studied using 14C-labeled ATIII. Binding isotherms of ATIII were modeled using a summation of two Langmuir equations. These equations describe the binding of ATIII to two different sets of binding sites, one with a high, the other with a low affinity for ATIII. The average binding constants for the binding of ATIII to these sites are 9 × 106 L/mol and 0.3 × 106 L/mol, respectively. The binding of ATIII to surface binding sites with a high affinity for ATIII was correlated with the presence of specific ATIII binding sites in the immobilized heparin. Binding of ATIII from albumin solutions to binding sites with a low affinity for ATIII was dominated by nonspecific binding of ATIII to the immobilized heparin. A third small fraction of the surface bound ATIII is probably adsorbed to sites on the surface not covered with heparin. In the case of the binding of ATIII to the heparinized surface from plasma solutions, a fraction of initially adsorbed ATIII was desorbed by other plasma proteins. This desorption in combination with direct competition between ATIII and other plasma proteins resulted in lower ATIII surface concentrations using plasma as compared to the ATIII surface concentrations obtained using albumin solutions. The binding of ATIII to nonspecific binding sites was almost completely inhibited in the presence of plasma proteins. The amount of ATIII bound to immobilized heparin via specific ATIII binding sites was 30% lower in plasma solutions as compared to the specific binding of ATIII using albumin solutions. It is concluded that the accessibility of immobilized heparin for ATIII in plasma decreases by binding of heparin-binding proteins onto the immobilized heparin and/or by adsorption of other plasma proteins on the heparinized surface

    Interaction of antithrombin III with surface-immobilized albumin-heparin conjugates

    No full text
    The interaction between antithrombin III (ATIII) and albumin-heparin conjugates covalently coupled onto carboxylated polystyrene beads either in buffer containing albumin or in plasma was studied using 14C-labeled ATIII. Binding isotherms of ATIII were modeled using a summation of two Langmuir equations. These equations describe the binding of ATIII to two different sets of binding sites, one with a high, the other with a low affinity for ATIII. The average binding constants for the binding of ATIII to these sites are 9 × 106 L/mol and 0.3 × 106 L/mol, respectively. The binding of ATIII to surface binding sites with a high affinity for ATIII was correlated with the presence of specific ATIII binding sites in the immobilized heparin. Binding of ATIII from albumin solutions to binding sites with a low affinity for ATIII was dominated by nonspecific binding of ATIII to the immobilized heparin. A third small fraction of the surface bound ATIII is probably adsorbed to sites on the surface not covered with heparin. In the case of the binding of ATIII to the heparinized surface from plasma solutions, a fraction of initially adsorbed ATIII was desorbed by other plasma proteins. This desorption in combination with direct competition between ATIII and other plasma proteins resulted in lower ATIII surface concentrations using plasma as compared to the ATIII surface concentrations obtained using albumin solutions. The binding of ATIII to nonspecific binding sites was almost completely inhibited in the presence of plasma proteins. The amount of ATIII bound to immobilized heparin via specific ATIII binding sites was 30% lower in plasma solutions as compared to the specific binding of ATIII using albumin solutions. It is concluded that the accessibility of immobilized heparin for ATIII in plasma decreases by binding of heparin-binding proteins onto the immobilized heparin and/or by adsorption of other plasma proteins on the heparinized surface

    Heparainization of gas plasma-modified polystyrene surfaces and the interactions of these surfaces with proteins studied with surface plasmon resonance

    Get PDF
    Polystyrene surfaces obtained by spin-coating a solution of polystyrene in toluene on a gold layer were functionalized with carboxylic acid groups by preadsorption of the sodium salt of undecylenic acid, followed by an argon plasma treatment. A conjugate of albumin and heparin (alb-hep) was covalently immobilized onto the functionalized surface via preactivation of carboxylic acid groups with a water-soluble carbodiimide. The immobilization of alb-hep conjugate and the subsequent interactions of the heparinized surface with antithrombin III (ATIII, a heparin cofactor) and thrombin were monitored with surface plasmon resonance (SPR). The surface concentration of conjugate as determined with SPR deviated quantitatively from the results obtained with radiolabelled conjugate. The difference in surface concentrations of conjugate obtained with the two methods probably originates from the uncertainty of the refractive index of the alb-hep conjugate in the SPR technique. ATIII could be bound to the surface modified with alb-hep conjugate but not to a polystyrene surface modified with albumin. Rabbit anti-human ATIII did bind to the alb-hep surface previously exposed to ATIII, confirming the presence of surface bound ATIII. The alb-hep immobilized surface was able to bind much more thrombin than ATIII, which is probably due to the less specific heparin-thrombin interaction as compared to the heparin-ATIII interaction. This study shows that SPR is a technique that can be used to study, in real time, both the modification of polymer surfaces and the subsequent interactions of the modified surfaces with proteins
    corecore