576 research outputs found

    Nonlinear deformed su(2) algebras involving two deforming functions

    Full text link
    The most common nonlinear deformations of the su(2) Lie algebra, introduced by Polychronakos and Ro\v cek, involve a single arbitrary function of J_0 and include the quantum algebra su_q(2) as a special case. In the present contribution, less common nonlinear deformations of su(2), introduced by Delbecq and Quesne and involving two deforming functions of J_0, are reviewed. Such algebras include Witten's quadratic deformation of su(2) as a special case. Contrary to the former deformations, for which the spectrum of J_0 is linear as for su(2), the latter give rise to exponential spectra, a property that has aroused much interest in connection with some physical problems. Another interesting algebra of this type, denoted by Aq+(1){\cal A}^+_q(1), has two series of (N+1)-dimensional unitary irreducible representations, where N=0, 1, 2, .... To allow the coupling of any two such representations, a generalization of the standard Hopf axioms is proposed. The resulting algebraic structure, referred to as a two-colour quasitriangular Hopf algebra, is described.Comment: 8 pages, LaTeX, no figures, submitted to Proc. 5th Int. Coll. ``Quantum Groups and Integrable Systems'', Prague, 20-22 June 1996 (to be published in Czech. J. Phys.

    Dynamically enhancing qubit-oscillator interactions with anti-squeezing

    Full text link
    The interaction strength of an oscillator to a qubit grows with the oscillator's vacuum field fluctuations. The well known degenerate parametric oscillator has revived interest in the regime of strongly detuned squeezing, where its eigenstates are squeezed Fock states. Owing to these amplified field fluctuations, it was recently proposed that squeezing this oscillator would dynamically boost its coupling to a qubit. In a superconducting circuit experiment, we observe a two-fold increase in the dispersive interaction between a qubit and an oscillator at 5.5 dB of squeezing, demonstrating in-situ dynamical control of qubit-oscillator interactions. This work initiates the experimental coupling of oscillators of squeezed photons to qubits, and cautiously motivates their dissemination in experimental platforms seeking enhanced interactions.Comment: 21 pages, 15 figure

    A report on the nonlinear squeezed states and their non-classical properties of a generalized isotonic oscillator

    Full text link
    We construct nonlinear squeezed states of a generalized isotonic oscillator potential. We demonstrate the non-existence of dual counterpart of nonlinear squeezed states in this system. We investigate statistical properties exhibited by the squeezed states, in particular Mandel's parameter, second-order correlation function, photon number distributions and parameter A3A_3 in detail. We also examine the quadrature and amplitude-squared squeezing effects. Finally, we derive expression for the ss-parameterized quasi-probability distribution function of these states. All these information about the system are new to the literature.Comment: Accepted for publication in J. Phys. A: Math. Theo

    The ideal healthcare: priorities of people with chronic conditions and their carers

    Get PDF
    Background It is well established that health consumer opinions should be considered in the design, delivery, and evaluation of health services. However, the opinions of people with chronic conditions and their carers and what they actually consider as ideal healthcare is limited. The aim of this study is to investigate the healthcare priorities of consumers with chronic conditions and their carers, if there are differences between these two groups, and if priorities differ depending on geographical location. Methods The nominal group technique was used as a method to identify what is currently important to, or valued by, participants. This method was also particularly suited to learning about healthcare problems and generating important solutions, thereby helping to bridge the gap between research and policy. Recruitment was carried out via purposive sampling, with the assistance of community pharmacies, general practices, various health agencies, government and non-government organisations. A total of 11 nominal groups were conducted; five groups consisted predominantly of consumers (n = 33 participants), two groups consisted predominantly of carers (n = 12 participants) and four were mixed groups, i.e. consumers, carers, and both (n = 26 participants). Results The findings suggested that to create a model of ideal healthcare for people with chronic conditions and their carers, appropriate and timely healthcare access was of paramount importance. Continuity and coordinated care, patient-centred care and affordability were equally the second most important healthcare priorities for all groups. When compared with other groups, access was discussed more frequently among participants residing in the rural area of Mount Isa. Compared to consumers, carers also discussed priorities that were more reminiscent with their caring roles, such as increased access and continuity and coordinated care. Conclusions Access to healthcare is the most important priority for people with chronic conditions and their carers. In the event of inappropriate access for certain groups, all other efforts to increase the quality of healthcare delivery, e.g. patient-centred care, may be pointless. However, health professionals alone may be limited in their ability to address the concerns related to healthcare access; structural changes by health policy makers may be needed

    Coupling a quantum dot, fermionic leads and a microwave cavity on-chip

    Full text link
    We demonstrate a hybrid architecture consisting of a quantum dot circuit coupled to a single mode of the electromagnetic field. We use single wall carbon nanotube based circuits inserted in superconducting microwave cavities. By probing the nanotube-dot using a dispersive read-out in the Coulomb blockade and the Kondo regime, we determine an electron-photon coupling strength which should enable circuit QED experiments with more complex quantum dot circuits.Comment: 4 pages, 4 figure

    Circuit Quantum Electrodynamics with a Spin Qubit

    Full text link
    Circuit quantum electrodynamics allows spatially separated superconducting qubits to interact via a "quantum bus", enabling two-qubit entanglement and the implementation of simple quantum algorithms. We combine the circuit quantum electrodynamics architecture with spin qubits by coupling an InAs nanowire double quantum dot to a superconducting cavity. We drive single spin rotations using electric dipole spin resonance and demonstrate that photons trapped in the cavity are sensitive to single spin dynamics. The hybrid quantum system allows measurements of the spin lifetime and the observation of coherent spin rotations. Our results demonstrate that a spin-cavity coupling strength of 1 MHz is feasible.Comment: Related papers at http://pettagroup.princeton.edu

    Long-Term Functionality of Rural Water Services in Developing Countries: A System Dynamics Approach to Understanding the Dynamic Interaction of Causal Factors

    Full text link
    Research has shown that sustainability of rural water infrastructure in developing countries is largely affected by the dynamic and systemic interactions of technical, social, financial, institutional, and environmental factors that can lead to premature water system failure. This research employs systems dynamic modeling, which uses feedback mechanisms to understand how these factors interact dynamically to influence long-term rural water system functionality. To do this, the research first identified and aggregated key factors from literature, then asked water sector experts to indicate the polarity and strength between factors through Delphi and cross impact survey questionnaires, and finally used system dynamics modeling to identify and prioritize feedback mechanisms. The resulting model identified 101 feedback mechanisms that were dominated primarily by three and four-factor loops that contained some combination of the factors: Water System Functionality, Community, Financial, Government, Management, and Technology. These feedback mechanisms were then scored and prioritized, with the most dominant feedback mechanism identified as Water System Functionality – Community – Finance – Management. This research offers insight into the dynamic interaction of factors impacting sustainability of rural water infrastructure through the identification of these feedback mechanisms and makes a compelling case for future research to longitudinally investigate the interaction of these factors in various contexts

    One hundred second bit-flip time in a two-photon dissipative oscillator

    Full text link
    Current implementations of quantum bits (qubits) continue to undergo too many errors to be scaled into useful quantum machines. An emerging strategy is to encode quantum information in the two meta-stable pointer states of an oscillator exchanging pairs of photons with its environment, a mechanism shown to provide stability without inducing decoherence. Adding photons in these states increases their separation, and macroscopic bit-flip times are expected even for a handful of photons, a range suitable to implement a qubit. However, previous experimental realizations have saturated in the millisecond range. In this work, we aim for the maximum bit-flip time we could achieve in a two-photon dissipative oscillator. To this end, we design a Josephson circuit in a regime that circumvents all suspected dynamical instabilities, and employ a minimally invasive fluorescence detection tool, at the cost of a two-photon exchange rate dominated by single-photon loss. We attain bit-flip times of the order of 100 seconds for states pinned by two-photon dissipation and containing about 40 photons. This experiment lays a solid foundation from which the two-photon exchange rate can be gradually increased, thus gaining access to the preparation and measurement of quantum superposition states, and pursuing the route towards a logical qubit with built-in bit-flip protection
    • 

    corecore