28 research outputs found

    STM observation of electronic wave interference effect in finite-sized graphite with dislocation-network structures

    Full text link
    Superperiodic patterns near a step edge were observed by STM on several-layer-thick graphite sheets on a highly oriented pyrolitic graphite substrate, where a dislocation network is generated at the interface between the graphite overlayer and the substrate. Triangular- and rhombic-shaped periodic patterns whose periodicities are around 100 nm were observed on the upper terrace near the step edge. In contrast, only outlines of the patterns similar to those on the upper terrace were observed on the lower terrace. On the upper terrace, their geometrical patterns gradually disappeared and became similar to those on the lower terrace without any changes of their periodicity in increasing a bias voltage. By assuming a periodic scattering potential at the interface due to dislocations, the varying corrugation amplitudes of the patterns can be understood as changes in LDOS as a result of the beat of perturbed and unperturbed waves, i.e. the interference in an overlayer. The observed changes in the image depending on an overlayer height and a bias voltage can be explained by the electronic wave interference in the ultra-thin overlayer distorted under the influence of dislocation-network structures.Comment: 8 pages; 6 figures; Paper which a part of cond-mat/0311068 is disscussed in detai

    Change in Structure of Bi 2

    No full text

    Evaluation of exposure to polycyclic aromatic hydrocarbons in a coke production and a graphite electrode manufacturing plant: assessment of urinary excretion of 1-hydroxypyrene as a biological indicator of exposure.

    No full text
    OBJECTIVES--Characterisation of the airborne concentration of 13 polycyclic aromatic hydrocarbons (PAHs) at various workplaces in a graphite electrode and a coke production plant. Validation of the urinary excretion of 1-hydroxypyrene (hydroxypyrene) as a biological marker of exposure to PAH. DESIGN--Cross sectional study of workers exposed to PAHs (106 in the graphite electrode producing plant and 16 in the coke works). METHODS--Personal air sampling during at least six hours per workshift using a glass fibre filter and a Chromosorb 102 solid sorbent tube and analysis of PAHs by high performance liquid chromatography (HPLC) and spectrofluorometric detection (SFD). Collection of spot urine samples before and after the shift and analysis of 1-hydroxypyrene by HPLC and SFD. RESULTS--The workers most exposed to PAHs were those occupied at the topside area of the coke oven plant and those working in the blending and impregnation areas of the graphite electrode producing plant (mean airborne concentration of total PAHs: 199 and 223 micrograms/m3 respectively). Except for naphthalene and perylene, the relative proportion of the different PAHs did not differ between the plants. Pyrene concentration in air was highly correlated with the total airborne PAH concentration (r = 0.83, p < 0.0001) and the correlation coefficients between hydroxypyrene concentration in postshift urine samples and pyrene or total PAHs in air were 0.67 (p < 0.0001) and 0.72 (p < 0.0001) respectively. Excretion of hydroxypyrene doubled when the exposure to pyrene in air increased 10-fold. The half life for the urinary excretion of hydroxypyrene was around 18 hours (95% confidence interval 16.1-19.8). Smoking habits only explained 2.3% of the variance in hydroxypyrene excretion compared with 45% for the pyrene concentration in air. CONCLUSION--The determination of the urinary excretion of hydroxypyrene in postshift urine samples can be used as a suitable biomarker to assess individual exposure to PAHs in coke ovens and in graphite electrode manufacturing plants

    Biological monitoring and occupational health surveillance in mechanics

    Full text link

    Determinants of urinary thioethers, D-glucaric acid and mutagenicity after exposure to polycyclic aromatic hydrocarbons assessed by air monitoring and measurement of 1-hydroxypyrene in urine: a cross-sectional study in workers of coke and graphite-electrode-producing plants

    No full text
    A cross-sectional epidemiological study was performed on 286 workers from two coke oven and one graphite electrode plants. The aim was to evaluate the usefulness of monitoring 1-hydroxypyrene (1-HOP) in urine for assessing exposure to polycyclic aromatic hydrocarbons (PAHs), and that of the urinary excretion of thioethers and D-glucaric acid, and the mutagenic activity of urine as indicators or biological effects of PAHs. The results confirm that 1-HOP determination in urine probably reflects exposure to PAHs by all routes and is not significantly influenced by the smoking habit. In comparison with the total PAHs in the air and 1-hydroxypyrene in urine, taken as reference exposure parameters, the results indicate that urinary D-glucaric acid excretion is not positively influenced by PAHs exposure; thioethers determination in urine is of poor value, since the smoking habit is a strong confounding factor. The determination of urinary mutagenicity might contribute to the detection of groups of workers exposed to potentially genotoxic PAHs
    corecore