20 research outputs found

    Design of smart garments for sports and rehabilitation

    Get PDF
    Physical exercise has proved benefits for general health [1] and can reduce the number of sports injuries to one third [2]. However, an athlete that has been injured during sports practice may omit this out of fear of discrimination, and worsen the injury in the weight room, during strength training [5]. Monitoring physiological status of an athlete or rehabilitation patients during training may thus help the person to get an earlier intervention, preventing injuries from getting worse. With this in mind, we propose a set of compression garments – shirt and leggings – with textile sensors to continually monitor heart and muscle activity, breathing rate and temperature. This paper reports the design of the garments and production of the shirt, which comprised a 3-lead ECG system, sEMG (Surface Electromiography) electrodes and a breathing sensor. The ECG (Electrocardiography) system was tested and presented some good results, in particular for very even movements, but the system still needs to be improved, in order to get a better signal, when it comes to movements with a considerable amplitude.This work is financed by Project “Deus ex Machina”, NORTE-01-0145-FEDER-000026, funded by CCDRN, through Sistema de Apoio à Investigação Cientifica e Tecnológica (Projetos Estruturados I&D&I) of Programa Operacional Regional do Norte, from Portugal 2020 and by FEDER funds through the Competitivity Factors Operational Programme - COMPETE and by national funds through FCT – Foundation for Science and Technology within the scope of the project POCI-01-0145-FEDER-007136.info:eu-repo/semantics/publishedVersio

    Home-based isometric exercise training induced reductions resting blood pressure

    Get PDF
    Purpose: Isometric exercise training (IET) reduces resting blood pressure (BP). Most previous protocols impose exercise barriers which undermine its effectiveness as a potential physical therapy for altering BP. An inexpensive, home-based programme would promote IET as a valuable tool in the fight against hypertension. The aims of this study were: (a) to investigate whether home-based wall squat training could successfully reduce resting BP, and (b) to explore the physiological variables that might mediate a change in resting BP. Methods: Twenty-eight healthy normotensive males were randomly assigned to a control and a 4 week home-based IET intervention using a crossover design with a 4 week ‘washout’ period in-between. Wall squat training was completed 3x weekly over 4 weeks with 48 hours between sessions. Each session comprised 4x 2 minute bouts of wall squat exercise performed at a participant-specific knee joint angle relative to a target HR of 95% HRpeak, with 2 minutes rest between bouts. Resting heart rate, BP, cardiac output, total peripheral resistance and stroke volume were taken at baseline and post each condition. Results: Resting BP (systolic = -4 ± 5, diastolic = -3 ± 3 and mean arterial = -3 ± 3 mmHg), cardiac output (-0.54 ± 0.66 L∙min-1) and heart rate (-5 ± 7 beats∙min-1) were all reduced following IET, with no change in total peripheral resistance or stroke volume compared to the control. Conclusion: These findings suggest the wall squat provides an effective method for reducing resting BP in the home resulting primarily from a reduction in resting heart rate
    corecore