1,906 research outputs found

    On the measurement of B(E2, 0+ -> 2+) using intermediate-energy Coulomb excitation

    Full text link
    Coulomb excitation is a standard method used to extract quadrupole excitation strengths of even-even nuclei. In typical analyses the reaction is assumed to be one-step, Coulomb only, and is treated within a semi-classical model. In this work, fully-quantal coupled-channel calculations are performed for three test cases in order to determine the importance of multi-step effects, nuclear contributions, feeding from other states and corrections to the semi-classical approximation. We study the excitation of 30S, 58Ni and 78Kr on 197Au at ~ 50 AMeV. We find that nuclear effects may contribute more than 10% and that feeding contributions can be larger than 15%. These corrections do not alter significantly the published B(E2) values, however an additional theoretical error of up to 13% should be added to the experimental uncertainty if the semi-classical model is used. This theoretical error is reduced to less than 7% when performing a quantal coupled-channel analysis.Comment: 9 pages, accepted for publication in J. Phys. G: Nucl. Phy

    Coupling and higher-order effects in the 12C(d,p)13C and 13C(p,d)12C reactions

    Full text link
    Coupled channels calculations are performed for the 12C(d,p)13C and 13C(p,d)12C reactions between 7 and 60 MeV to study the effect of inelastic couplings in transfer reactions. The effect of treating transfer beyond Born approximation is also addressed. The coupling to the 12C 2+ state is found to change the peak cross-section by up to 15 %. Effects beyond Born approximation lead to a significant renormalization of the cross-sections, between 5 and 10 % for deuteron energies above 10 MeV, and larger than 10 % for lower energies. We also performed calculations including the remnant term in the transfer operator, which has a small impact on the 12C(d,p)13C(g.s.) and 13C(p,d)12C(g.s.) reactions. Above 30 MeV deuteron energy, the effect of the remnant term is larger than 10 % for the 12C(d,p)13C(3.09 MeV) reaction and is found to increase with decreasing neutron separation energy for the 3.09 MeV state of 13C. This is of importance for transfer reactions with weakly bound nuclei.Comment: 7 pages, 7 figures, submitted to Phys. Rev.

    Tests of a cooling system for thin targets submitted to intense ion beams for the numen experiment

    Get PDF
    The NUMEN experiment, hosted at LNS (Catania, Italy), aims to determine the Nuclear Matrix Elements (NMEs) involved in 0ÎČ ÎČ decay via heavy-ion induced Double Charge Exchange (DCE) reactions. High intensity beams of about 50 ÎŒA and of energies ranging from 15 to 60 MeV/u are necessary, due to the low DCE cross sections and the use of very thin targets (several hundreds of nm) needed to reach the required energy resolution. These intense beams produce a considerable amount of heat inside the target, which can be dissipated by depositing the targets on a highly thermally conductive substrate, HOPG (Highly Oriented Pyrolytic Graphite), and coupling it with a suitable designed target-cooler system. The heat transfer from the beam spot to the cold region has been studied by solving numerically the heat equation to determine the evolution in space and time of the temperature inside the target. According to calculations, the temperatures of most of the target isotopes remain under the melting points. Experimental tests with a laser were initiated to validate the whole cooling system and the calculations

    Thickness and uniformity characterization of thin targets for intense ion beam experiments

    Get PDF
    The NUMEN Experiment aims to get information on the Nuclear Matrix Elements of the Neutrinoless Double Beta Decay, by measuring heavyion induced Double Charge Exchange (DCE) reactions cross sections. A good energy resolution is needed to clearly distinguish energy states of DCE products. To measure the energy of reaction products with the required resolution, the target must be thin and uniform to minimise dispersion and straggling effects on the ejectile energy. Few hundreds of nanometers of the target isotope are deposited on a Highly Oriented Pyrolytic Graphite substrate a few micrometers thick. The results of the characterisation of the first target prototypes of tin and tellurium are presented. The Scanning Electron Microscopy was used to qualitatively analyse the samples surface. A setup to study Alpha Particle Transmission has been assembled to measure thickness and uniformity of the targets; the thickness results have been verified by the Rutherford Backscattering measurements. To evaluate the effects of the thickness on the resolution of the DCE products energy, a Monte Carlo code has been implemented, using the measured thickness and uniformity as input data for the simulation

    Generation of Vorticity and Velocity Dispersion by Orbit Crossing

    Full text link
    We study the generation of vorticity and velocity dispersion by orbit crossing using cosmological numerical simulations, and calculate the backreaction of these effects on the evolution of large-scale density and velocity divergence power spectra. We use Delaunay tessellations to define the velocity field, showing that the power spectra of velocity divergence and vorticity measured in this way are unbiased and have better noise properties than for standard interpolation methods that deal with mass weighted velocities. We show that high resolution simulations are required to recover the correct large-scale vorticity power spectrum, while poor resolution can spuriously amplify its amplitude by more than one order of magnitude. We measure the scalar and vector modes of the stress tensor induced by orbit crossing using an adaptive technique, showing that its vector modes lead, when input into the vorticity evolution equation, to the same vorticity power spectrum obtained from the Delaunay method. We incorporate orbit crossing corrections to the evolution of large scale density and velocity fields in perturbation theory by using the measured stress tensor modes. We find that at large scales (k~0.1 h/Mpc) vector modes have very little effect in the density power spectrum, while scalar modes (velocity dispersion) can induce percent level corrections at z=0, particularly in the velocity divergence power spectrum. In addition, we show that the velocity power spectrum is smaller than predicted by linear theory until well into the nonlinear regime, with little contribution from virial velocities.Comment: 27 pages, 14 figures. v2: reorganization of the material, new appendix. Accepted by PR

    Evaluation of target non-uniformity and dispersion effects on energy measurement resolution in NUMEN experiment

    Get PDF
    In the NUMEN Experiment, Double Charge Exchange (DCE) reactions will be studied to get very precise measurements of their cross sections and final state levels. The interest for these reactions lies in the possibility for some nuclides to have DCE with initial and final states identical to those of the Neutrinoless Double ÎČ-Decay. To reach a good precision in the energy measurements, high statistics is needed and severe constraints about the target thickness must be satisfied. A 50 ÎŒA intense ion beam will provide the desired statistics, while posing the problem of dissipating the massive heat generated in the target. It is therefore necessary to design a suitable cooling system, which must affect the particles' energy as little as possible. Said energy is already influenced by the current setup. The Superconducting Cyclotron (SC) and the MAGNEX Spectrometer introduce an error on the particles' energy by 1/1000th (FWHM value) of its average energy. In the target, the main sources of error are straggling of projectiles and reaction products, and the dispersion effect. Both closely depend on the target thickness, which must be of the order of few hundred nanometres. In addition, the two effects are worsened if the target thickness is not uniform. The solution to these problems has been found by backing the target isotope with relatively thin substrate of Highly Oriented Pyrolytic Graphite (HOPG). Its thermodynamic properties fit the cooling requirements and can be as thin as 450 ÎŒg cm-2. The further straggling suffered by the ejectiles is tolerable, falling within the resolution requirements. Samples are deposited by using Electron Beam Evaporation: results obtained for Sn and Te are checked by Scanning Electron Microscopy (SEM). A quantitative evaluation of the samples' thickness has been performed by Alpha-Particle Transmission (APT) and Rutherford Backscattering Spectrometry (RBS) measurements. A Monte Carlo code has been implemented to estimate the ejectiles energy distribution using the experimental measurements as input. Results from characterization and simulations help in optimizing the target thickness and the energy resolution of reaction products

    Comment on "First Observation of Ground State Dineutron Decay: 16Be"

    Full text link
    A recent measurement [Spyrou et al., PRL 108, 102501 (2012)] of the in-flight decay of 16Be into 14Be+n+n has been interpreted as the first case of dineutron emission. Here we point out that the inclusion of the n-n interaction neglected in the description of the direct three-body decay can generate strong enhancements at low n-n relative energy and angle, as observed, without any need to invoke dineutron decay.Comment: Final version, published in Physical Review Letter

    Proof of the Double Bubble Conjecture in R^n

    Get PDF
    The least-area hypersurface enclosing and separating two given volumes in R^n is the standard double bubble.Comment: 20 pages, 22 figure
    • 

    corecore