59 research outputs found
Total Cross Sections for Neutron Scattering
Measurements of neutron total cross-sections are both extensive and extremely
accurate. Although they place a strong constraint on theoretically constructed
models, there are relatively few comparisons of predictions with experiment.
The total cross-sections for neutron scattering from O and Ca are
calculated as a function of energy from ~MeV laboratory energy with a
microscopic first order optical potential derived within the framework of the
Watson expansion. Although these results are already in qualitative agreement
with the data, the inclusion of medium corrections to the propagator is
essential to correctly predict the energy dependence given by the experiment.Comment: 10 pages (Revtex 3.0), 6 fig
The nuclear energy density functional formalism
The present document focuses on the theoretical foundations of the nuclear
energy density functional (EDF) method. As such, it does not aim at reviewing
the status of the field, at covering all possible ramifications of the approach
or at presenting recent achievements and applications. The objective is to
provide a modern account of the nuclear EDF formalism that is at variance with
traditional presentations that rely, at one point or another, on a {\it
Hamiltonian-based} picture. The latter is not general enough to encompass what
the nuclear EDF method represents as of today. Specifically, the traditional
Hamiltonian-based picture does not allow one to grasp the difficulties
associated with the fact that currently available parametrizations of the
energy kernel at play in the method do not derive from a genuine
Hamilton operator, would the latter be effective. The method is formulated from
the outset through the most general multi-reference, i.e. beyond mean-field,
implementation such that the single-reference, i.e. "mean-field", derives as a
particular case. As such, a key point of the presentation provided here is to
demonstrate that the multi-reference EDF method can indeed be formulated in a
{\it mathematically} meaningful fashion even if does {\it not} derive
from a genuine Hamilton operator. In particular, the restoration of symmetries
can be entirely formulated without making {\it any} reference to a projected
state, i.e. within a genuine EDF framework. However, and as is illustrated in
the present document, a mathematically meaningful formulation does not
guarantee that the formalism is sound from a {\it physical} standpoint. The
price at which the latter can be enforced as well in the future is eventually
alluded to.Comment: 64 pages, 8 figures, submitted to Euroschool Lecture Notes in Physics
Vol.IV, Christoph Scheidenberger and Marek Pfutzner editor
Triaxiality near the 110Ru ground state from Coulomb excitation
A multi-step Coulomb excitation measurement with the GRETINA and CHICO2 detector arrays was carried out with a 430-MeV beam of the neutron-rich 110Ru (t1/2=12 s) isotope produced at the CARIBU facility. This represents the first successful measurement following the post-acceleration of an unstable isotope of a refractory element. The reduced transition probabilities obtained for levels near the ground state provide strong evidence for a triaxial shape; a conclusion confirmed by comparisons with the results of beyond-mean-field and triaxial rotor model calculations
Combinatorial nuclear level densities based on the Gogny nucleon-nucleon effective interaction
A combinatorial method to calculate total level densities
from an arbitrary single-particle level scheme is presented. Parity,
angular momentum, pairing correlations as well as collective
enhancements are explicitly treated. This method is employed using
single-particle level schemes obtained from Hartree-Fock-Bogoliubov
calculations based on the Gogny effective interaction. Sixty five
even-even nuclei with masses are considered.
Rather good agreements are obtained when comparing our predictions
with experimental data for energies of the order of the neutron
binding energies and for low excitation energies where discrete
levels are experimentally observed
Five-dimensional collective Hamiltonian with the Gogny force: An ongoing saga
International audienceWe provide a sample of analyses for nuclear spectroscopic properties based on the five-dimensional collective Hamiltonian (5DCH) implemented with the Gogny force. The very first illustration is dating back to the late 70's. It is next followed by others, focusing on shape coexistence, shape isomerism, superdeformation, and systematics over the periodic table. Finally, the inclusion of Thouless-Valatin dynamical contributions to vibrational mass parameters is briefly discussed as a mean of strengthening the basis of the 5DCH theory
Collective structure of shape isomers in the Hg isotopes
Structure studies based on either the Strutinsky method or self-consistent Hartree-Fock (HF) and Hartree-Fock-Bogoliubov (HFB) mean field theories suggest that superdeformed (SD) states might well develop at large quadrupole deformation (i.e. ÎČgt-or-equal, slanted0.5) in mercury isotopes. In this work, we predict the existence of IÏ=0+ shape isomers which might take place at excitation energies of 4.4, 5.4 and 6.9 MeV in 190Hg, 192Hg and 194Hg, respectively. These SD levels are obtained by solving the Griffin-Hill-Wheeler equation in the gaussian overlap approximation. Inputs for that collective hamiltonian are tensors of inertia as well as potential energy surfaces which are deduced from constrained HFB calculations based on the finite-range, density-dependent effective force of Gogny
Ab initio calculation of superdeformed bands in Hg
Three superdeformed (SD) bands including states with spins IÏâ€22+ are predicted for 192Hg. The SD and normally deformed levels are calculated as eigenstates of the Griffin-Hill-Wheeler equation treated in the Gaussian overlap approximation. Potential and tensor of inertia are deduced from constrained Hartree-Fock-Bogoliubov calculations based on Gogny's force. Rates for E2 in-band transitions are deduced and compared with recent measurements. The decay out of SD bands is discussed
- âŠ