3,570 research outputs found

    Prediction of the energy efficiency of an Ar-H2-O2 plasma torch with Ansys Fluent

    No full text
    International audienceThis study aims at modeling an inductively heated Ar-H2-O2 plasma [1]. This plasma produced by a plasma torch is commonly used for the removal of boron from Silicon [2]. Some modules made at SIMAP-EPM enable us to model the plasma specificities and the interaction of the conducting fluid with the electromagnetic field. The power generated by the coil will be partly dissipated with the joule effect in the conductive parts of the device, partly transmitted into the plasma. The energy transmitted into the plasma will be partly used for chemical reactions, partly used to heat the plasma. However the plasma will also transmit some of its energy to the water-cooled walls with the radiative effects. We define the energy efficiency R eff as the fraction of plasma power provided by the torch to the reactor (in the form of an enthalpy flow and radiation flux). This study aims to predict this ratio for a given set of experiments [3]

    Neel order, ring exchange and charge fluctuations in the half-filled Hubbard model

    Full text link
    We investigate the ground state properties of the two dimensional half-filled one band Hubbard model in the strong (large-U) to intermediate coupling limit ({\it i.e.} away from the strict Heisenberg limit) using an effective spin-only low-energy theory that includes nearest-neighbor exchange, ring exchange, and all other spin interactions to order t(t/U)^3. We show that the operator for the staggered magnetization, transformed for use in the effective theory, differs from that for the order parameter of the spin model by a renormalization factor accounting for the increased charge fluctuations as t/U is increased from the t/U -> 0 Heisenberg limit. These charge fluctuations lead to an increase of the quantum fluctuations over and above those for an S=1/2 antiferromagnet. The renormalization factor ensures that the zero temperature staggered moment for the Hubbard model is a monotonously decreasing function of t/U, despite the fact that the moment of the spin Hamiltonien, which depends on transverse spin fluctuations only, in an increasing function of t/U. We also comment on quantitative aspects of the t/U and 1/S expansions.Comment: 9 pages - 3 figures - References and details to help the reader adde

    Simulation of free surface and molten metal behavior during induction melting of an aluminium alloy

    No full text
    International audienceElectromagnetic forces are widely used for processing metal alloys in particular in the aluminium casting industry. Induction is used in melting technologies (both crucible and channel induction furnaces). Magnetic stirrers are also used in melting or casting furnaces. However these technologies applied to opaque melts require modelling to be done to understand the resultant impact on the fluid and improve the process control. This is especially the case of crucible induction furnaces. A 2D axially symmetric numerical model describing the coupled magnetohydrodynamic and free surface phenomena taking place in an induction metal bath has been developed. The model uses the Ansys Fluent software, supplemented with additional User Defined Functions for the calculation of the Lorentz forces acting on the metal. The calculation of the shape of the free surface is based on the Volume Of Fluid method and a RANS k-ω Shear Stress Transport (SST) approach is used to describe the turbulent stirring of the metal. An original feature of our model is the consideration of an oxide skin covering the metal free surface. It was considered that the oxide film behaves similarly to a deforming wall and that friction effects between the oxide film and the metal result in the development of a shear stress at the top surface of the melt. Two examples of application of model are reported, for lab scale and industrial scale induction furnaces. The lab scale results are compared with measurements of the free surface shape obtained using a fringe projection technique

    Multi frequency evaporative cooling to BEC in a high magnetic field

    Get PDF
    We demonstrate a way to circumvent the interruption of evaporative cooling observed at high bias field for 87^{87}Rb atoms trapped in the (F=2, m=+2) ground state. Our scheme uses a 3-frequencies-RF-knife achieved by mixing two RF frequencies. This compensates part of the non linearity of the Zeeman effect, allowing us to achieve BEC where standard 1-frequency-RF-knife evaporation method did not work. We are able to get efficient evaporative cooling, provided that the residual detuning between the transition and the RF frequencies in our scheme is smaller than the power broadening of the RF transitions at the end of the evaporation ramp.Comment: 12 pages, 2 figure

    Refining of metallurgical silicon for crystalline solar cells

    No full text
    International audienceA plasma-retining technique is applied to upgraded metallurgical grade silicon (UMG) to produce solar grade silicon for multi-c silicon ingots at direct costs lower than 15€/kg. Using oxygen and hydrogen as reactive gases injected in the plasma, boron is removed from the material mainly in form of BOH and BO. The boron volatili- Zation time has been reduced to 50 min compared to previous processes, by increasing the temperature of the silicon bath. At the same time, the Al, Ca, C, O concentrations are strongly reduced. From a Íirst batch of puritied UMG Silicon, multi-crystalline ingots (l2kg), wafers (125X125mm2) and solar cells have been produced for an evaluation of this intermediate material. The obtained solar cells gave efticiencies of up to ll.7%. Process development towards an up-scaled pilot equipment is on the Way to further increase the puritication efticiency

    Low energy theory of the t-t'-t''-U Hubbard Model at half-filling: interaction strengths in cuprate superconductors and an effective spin-only description of La_2CuO_4

    Get PDF
    Spin-only descriptions of the half-filled one-band Hubbard model are relevant for a wide range of Mott insulators. In addition to the usual Heisenberg exchange, many new types of interactions, including ring exchange, appear in the effective Hamiltonian in the intermediate coupling regime. In order to improve on the quantitative description of magnetic excitations in the insulating antiferromagnetic phase of copper-oxide (cuprate) materials, and to be consistent with band structure calculations and photoemission experiments on these systems, we include second and third neighbor hopping parameters, t' and t'', into the Hubbard Hamiltonian. A unitary transformation method is used to find systematically the effective Hamiltonian and any operator in the spin-only representation. The results include all closed, four hop electronic pathways in the canonical transformation. The method generates many ring exchange terms that play an important role in the comparison with experiments on La2CuO4. Performing a spin wave analysis, we calculate the magnon dispersion as a function of U,t,t' and t''. The four parameters are estimated by fitting the magnon dispersion to the experimental results of Coldea et al. [Phys. Rev. Lett. 86, 5377, {2001}] for La2CuO4. The ring exchange terms are found essential, in particular to determine the relative sign of t' and t'', with the values found in good agreement with independent theoretical and experimental estimates for other members of the cuprate family. The zero temperature sublattice magnetization is calculated using these parameters and also found to be in good agreement with the experimental value estimated by Lee et al. [Phys. Rev. B 60, 3643 (1999)]. We find a value of the interaction strength U~8t consistent with Mott insulating behavior.Comment: Submitted to Phys. Rev. B, 24 pages, 8 figures, 78 reference

    Quantum spin fluctuations in the dipolar Heisenberg-like rare earth pyrochlores

    Full text link
    The magnetic pyrochlore oxide materials of general chemical formula R2Ti2O7 and R2Sn2O7 (R = rare earth) display a host of interesting physical behaviours depending on the flavour of rare earth ion. These properties depend on the value of the total magnetic moment, the crystal field interactions at each rare earth site and the complex interplay between magnetic exchange and long-range dipole-dipole interactions. This work focuses on the low temperature physics of the dipolar isotropic frustrated antiferromagnetic pyrochlore materials. Candidate magnetic ground states are numerically determined at zero temperature and the role of quantum spin fluctuations around these states are studied using a Holstein-Primakoff spin wave expansion to order 1/S. The results indicate the strong stability of the proposed classical ground states against quantum fluctuations. The inclusion of long range dipole interactions causes a restoration of symmetry and a suppression of the observed anisotropy gap leading to an increase in quantum fluctuations in the ground state when compared to a model with truncated dipole interactions. The system retains most of its classical character and there is little deviation from the fully ordered moment at zero temperature.Comment: Latex2e, 18 pages, 4 figures, IOP forma

    Influence of apical oxygen on the extent of in-plane exchange interaction in cuprate superconductors

    Get PDF
    In high Tc superconductors the magnetic and electronic properties are determined by the probability that valence electrons virtually jump from site to site in the CuO2 planes, a mechanism opposed by on-site Coulomb repulsion and favored by hopping integrals. The spatial extent of the latter is related to transport properties, including superconductivity, and to the dispersion relation of spin excitations (magnons). Here, for three antiferromagnetic parent compounds (single-layer Bi2Sr0.99La1.1CuO6+delta, double-layer Nd1.2Ba1.8Cu3O6 and infinite-layer CaCuO2) differing by the number of apical atoms, we compare the magnetic spectra measured by resonant inelastic x-ray scattering over a significant portion of the reciprocal space and with unprecedented accuracy. We observe that the absence of apical oxygens increases the in-plane hopping range and, in CaCuO2, it leads to a genuine 3D exchange-bond network. These results establish a corresponding relation between the exchange interactions and the crystal structure, and provide fresh insight into the materials dependence of the superconducting transition temperature.Comment: 9 pages, 4 figures, 1 Table, 42 reference
    • …
    corecore