72 research outputs found
Recommended from our members
Frequency-magnitude distribution of microearthquakes beneath the 9°50′N region of the East Pacific Rise, October 2003 through April 2004
Relocated hypocentral data from a 7-month deployment (October 2003 to April 2004) of ocean bottom seismometers provide an opportunity to map microearthquake frequency-magnitude distributions (FMDs) along the 9°49–52′N region on the East Pacific Rise. These analyses, which incorporate more than 9000 earthquakes, represent the first investigation of the 3-D spatial and temporal patterns of FMDs along any mid-ocean ridge spreading center. The data are described well by a Gutenberg-Richter model, indicating a power law or fractal relationship between earthquake size and frequency. The scaling exponent, or b value, shows significant spatial variability, exceeding a value of 2.0 at the shallowest depths on axis and dropping below 1.0 away from the axial trough. This spatial pattern is consistent with an inverse relationship between b value and ambient stress conditions, with the lowest stress levels at shallow depths and relatively high stress levels (or low pore pressures) observed away from the axial zone. Intermediate b values are observed on-axis above the ridge system's melt lens; however, within this region there also exists significant spatial variability. This indicates that stress conditions and/or structural heterogeneity may vary at subkilometer scales within the hydrothermal circulation cell. Although the observational period is characterized by increasing seismicity rates, building toward an eruptive episode in January 2006, the first-order spatial pattern of b values is sustained, with no overall temporal trend. As a byproduct of this b value analysis, the detection capabilities of the array are assessed empirically
Soundscape manipulation enhances larval recruitment of a reef-building mollusk
© The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PeerJ 3 (2015): e999, doi:10.7717/peerj.999.Marine seafloor ecosystems, and efforts to restore them, depend critically on the influx and settlement of larvae following their pelagic dispersal period. Larval dispersal and settlement patterns are driven by a combination of physical oceanography and behavioral responses of larvae to a suite of sensory cues both in the water column and at settlement sites. There is growing evidence that the biological and physical sounds associated with adult habitats (i.e., the “soundscape”) influence larval settlement and habitat selection; however, the significance of acoustic cues is rarely tested. Here we show in a field experiment that the free-swimming larvae of an estuarine invertebrate, the eastern oyster, respond to the addition of replayed habitat-related sounds. Oyster larval recruitment was significantly higher on larval collectors exposed to oyster reef sounds compared to no-sound controls. These results provide the first field evidence that soundscape cues may attract the larval settlers of a reef-building estuarine invertebrate.Funding was provided by the National Science Foundation (Grants OCE-1234688 & ISO-1210292). Additional support for experimental materials came from a PADI Foundation Grant (#5145) and a National Shellfisheries Association Melbourne R. Carriker Student Research Grant to AL
Hydroacoustic monitoring of oceanic spreading centers : past, present, and future
Author Posting. © The Oceanography Society, 2012. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 25, no. 1 (2012): 116–127, doi:10.5670/oceanog.2012.10.Mid-ocean ridge volcanism and extensional faulting are the fundamental processes that lead to the creation and rifting of oceanic crust, yet these events go largely undetected in the deep ocean. Currently, the only means available to observe seafloor-spreading events in real time is via the remote detection of the seismicity generated during faulting or intrusion of magma into brittle oceanic crust. Hydrophones moored in the ocean provide an effective means for detecting these small-magnitude earthquakes, and the use of this technology during the last two decades has facilitated the real-time detection of mid-ocean ridge seafloor eruptions and confirmation of subseafloor microbial ecosystems. As technology evolves and mid-ocean ridge studies move into a new era, we anticipate an expanding network of seismo-acoustic sensors integrated into seafloor fiber-optic cabled observatories, satellite-telemetered surface buoys, and autonomous vehicle platforms.SOSUS studies discussed in
this paper were supported by the NOAA
Vents Program and during 2006–2009 by
the National Science Foundation, Grant
OCE-0623649
Variation in habitat soundscape characteristics influences settlement of a reef-building coral
© The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PeerJ 4 (2016): e2557, doi:10.7717/peerj.2557.Coral populations, and the productive reef ecosystems they support, rely on successful recruitment of reef-building species, beginning with settlement of dispersing larvae into habitat favourable to survival. Many substrate cues have been identified as contributors to coral larval habitat selection; however, the potential for ambient acoustic cues to influence coral settlement responses is unknown. Using in situ settlement chambers that excluded other habitat cues, larval settlement of a dominant Caribbean reef-building coral, Orbicella faveolata, was compared in response to three local soundscapes, with differing acoustic and habitat properties. Differences between reef sites in the number of larvae settled in chambers isolating acoustic cues corresponded to differences in sound levels and reef characteristics, with sounds at the loudest reef generating significantly higher settlement during trials compared to the quietest site (a 29.5 % increase). These results suggest that soundscapes could be an important influence on coral settlement patterns and that acoustic cues associated with reef habitat may be related to larval settlement. This study reports an effect of soundscape variation on larval settlement for a key coral species, and adds to the growing evidence that soundscapes affect marine ecosystems by influencing early life history processes of foundational species.Funding for this project was provided by a PADI Foundation Grant (#11304) to AL and US. National Science Foundation Grant OCE-1234688 to DE and DB. Financial support to AL during manuscript preparation was also provided by the Woods Hole Oceanographic Institution’s Ocean Life and Coastal Ocean Institutes
Recommended from our members
Pulse of the seafloor: Tidal triggering of microearthquakes at 9°50′N East Pacific Rise
Unequivocal evidence of tidal triggering is observed for microearthquakes (−0.4 to 2.0 M_L) recorded between October 2003 to April 2004 near 9°50′N on the East Pacific Rise (EPR). Although semidiurnal tidal stress changes are small (99.9%) nonrandom temporal distribution, with events occurring preferentially near times of peak extension. Due to the proximity of this site to an ocean tidal node, where changes in sea surface height are minimal, periodic stress changes are dominated by the solid Earth tide. In contrast, previous studies on the Juan de Fuca Ridge have shown microearthquake triggering to be a response to seafloor unloading during times of low ocean tide. The modulation of 9°50′N microearthquakes by small-amplitude periodic stresses is consistent with earthquake nucleation within a high stressing rate environment that is maintained near a critical state of failure by on-axis magmatic and hydrothermal processes
Oyster toadfish (Opsanus tau) boatwhistle call detection and patterns within a large-scale oyster restoration site
During May 2015, passive acoustic recorders were deployed at eight subtidal oyster reefs within Harris Creek Oyster Sanctuary in Chesapeake Bay, Maryland USA. These sites were selected to represent both restored and unrestored habitats having a range of oyster densities. Throughout the survey, the soundscape within Harris Creek was dominated by the boatwhistle calls of the oyster toadfish, Opsanus tau. A novel, multi-kernel spectral correlation approach was developed to automatically detect these boatwhistle calls using their two lowest harmonic bands. The results provided quantitative information on how call rate and call frequency varied in space and time. Toadfish boatwhistle fundamental frequency ranged from 140 Hz to 260 Hz and was well correlated (r = 0.94) with changes in water temperature, with the fundamental frequency increasing by similar to 11 Hz for every 1 degrees C increase in temperature. The boatwhistle call rate increased from just a few calls per minute at the start of monitoring on May 7 th to similar to 100 calls/min on May 10 th and remained elevated throughout the survey. As male toadfish are known to generate boatwhistles to attract mates, this rapid increase in call rate was interpreted to mark the onset of spring spawning behavior. Call rate was not modulated by water temperature, but showed a consistent diurnal pattern, with a sharp decrease in rate just before sunrise and a peak just after sunset. There was a significant difference in call rate between restored and unrestored reefs, with restored sites having nearly twice the call rate as unrestored sites. This work highlights the benefits of using automated detection techniques that provide quantitative information on species-specific call characteristics and patterns. This type of non-invasive acoustic monitoring provides longterm, semi-continuous information on animal behavior and abundance, and operates effectively in settings that are otherwise difficult to sample
Recommended from our members
Systematic along-axis tidal triggering of microearthquakes observed at 9°50′N East Pacific Rise
Hydrothermal fluid circulation at mid-ocean ridges facilitates the exchange of heat and chemicals between the oceans and the solid Earth, and supports chemosynthetic microbial and macro-faunal communities. The structure and evolution of newly formed oceanic crust plays a dominant role in controlling the character and longevity of hydrothermal systems; however, direct measurements of subsurface processes remain technologically challenging to obtain. Previous studies have shown that tidally-induced stresses within the subseafloor modulate both fluid flow and microearthquake origin times. In this study, we observe systematic along-axis variations between peak microearthquake activity and maximum predicted tidal extension beneath the hydrothermal vent site at 9°50′N East Pacific Rise. We interpret this systematic triggering to result from pore-pressure perturbations propagating laterally through the hydrothermal system. Based on our observations and a one-dimensional pore pressure perturbation model, we estimate bulk permeability at ∼10⁻¹³ to 10⁻¹² m² within layer 2B over a calculated diffusive lengthscale of 2.0 km
Recommended from our members
Acoustic response of submarine volcanoes in the Tofua Arc and northern Lau Basin to two great earthquakes
Using a short-baseline hydrophone array, persistent volcanoacoustic sources are identified within the ambient noise field of the Lau Basin during the period between 2009 January and 2010 April. The submarine volcano West Mata and adjacent volcanic terrains, including the northern Matas and Volcano O, are the most active acoustic sources during the 15-month period of observation. Other areas of long-term activity include the Niua hydrothermal field, the volcanic islands of Hunga Ha’apai, Founalei, Niuatoputapu and Niuafo’ou, two seamounts located along the southern Tofua Arc and at least three unknown sites within the northern Lau Basin. Following the great Samoan earthquake on 2009 September 29, seven of the volcanoacoustic sources identified exhibit increases in the rate of acoustic detection. These changes persist over timescales of days-to-months and are observed up to 900 km from the earthquake hypocentre. At least one of the volcanoacoustic sources that did not respond to the 2009 Samoan earthquake exhibits an increase in detection rate following the great Mw 8.8 Chile earthquake that occurred at a distance of ∼9500 km on 2010 February 27. These observations suggest that great earthquakes may have undocumented impacts on Earth’s vast submarine volcanic systems, potentially increasing the short-term flux of magma and volcanic gas into the overlying ocean.Keywords: Volcano seismology, Backarc basin processes, Subaqueous volcanism, Volcanic arc processe
Recommended from our members
January 2006 seafloor-spreading event at 9°50′N, East Pacific Rise: Ridge dike intrusion and transform fault interactions from regional hydroacoustic data
An array of autonomous underwater hydrophones is used to investigate regional seismicity associated with the 22 January 2006 seafloor-spreading event on the northern East Pacific Rise near 9°50′N. Significant earthquake activity was observed beginning 3 weeks prior to the eruption, where a total of 255 earthquakes were detected within the vicinity of the 9°50′N area. This was followed by a series of 252 events on 22 January and a rapid decline to background seismicity levels during the subsequent 3 days. Because of their small magnitudes, accurate locations could be derived for only 20 of these events, 18 of which occurred during a 1-h period on 22 January. These earthquakes cluster near 9°45′N and 9°55′N, at the distal ends of the young lava flows identified posteruption, where the activity displays a distinct spatial-temporal pattern, alternating from the north to the south and then back to the north. This implies either rapid bilateral propagation along the rift or the near-simultaneous injection of melt vertically from the axial magma lens. Short-duration T wave risetimes are consistent with the eruption of lavas in the vicinity of 9°50′N on 22 January 2006. Eruptions on 12 and 15–16 January also may be inferred from the risetime data; however, the locations of these smaller-magnitude events cannot be determined accurately. Roughly 15 h after the last earthquakes were located adjacent to the eruption site, a sequence of 16 earthquakes began to the north-northeast at a distance of 25–40 km from the 9°50′N site. These events are located in vicinity of the Clipperton Transform and its western inside corner, an area from which the regional hydrophone network routinely detects seismicity. Coulomb stress modeling indicates that a dike intrusion spanning the known eruptive zone to the south (9°46′–9°56′N) would act to promote normal faulting or a combination of normal faulting and transform slip within this region, with stress changes on the order of 1–10 kPa
Recommended from our members
Underwater acoustic records from the March 2009 eruption of Hunga Ha'apai-Hunga Tonga volcano in the Kingdom of Tonga
A network of autonomous underwater hydrophones is used to monitor acoustic activity associated with Hunga Ha'apai-Hunga Tonga volcano during a period of 15 months. The data provide a continuous record spanning a surtseyan eruption (VEI 2) in March of 2009, which input ~10¹³ J of acoustic energy into the ocean soundscape. In the months before the eruption, the volcano can be identified as an intermittent source of ambient noise. The period of seismic unrest that precedes the eruption begins at 15:11 UTC on 16 March (04:11 LT on 17 March), approximately 7 h before the first satellite confirmation of eruptive activity and 14 h before the first eyewitness reports. The initial seismic activity, which includes a single 4.8 m[subscript b] event at 15:25, evolves as a typical foreshock-mainshock-aftershock sequence. By 15:38, however, the rate of small earthquakes begins to increase, marking the onset of the seismic swarm. The period of highest-amplitude acoustic energy release between 16:40 and ~17:10 is interpreted to mark the opening of the volcanic conduit. By 19:00 on 16 March, the acoustic signature of the volcano is marked by a continuous wide-band (1-20 Hz) noise and a set of transient very-broadband (1-125 Hz) explosion signals. This activity is characteristic of the main surtseyan phase of the eruption. Both the intensity of explosions and the amplitude of the lower frequency wide-band noise decay through time, and eruptive activity likely ends at ~09:00 on 19 March, ~2.7 days after the initiation of seismic activity. At this time the continuous low frequency noise decays to near back-ground levels and signal coherence drops suddenly. Low-level acoustic unrest persists through June of 2009, after which the volcano becomes acoustically dormant during the remaining ten months of monitoring. The analysis of volcano-acoustic signals associated with Hunga Ha'apai-Hunga Tonga volcano highlights the potential role of regional hydroacoustic monitoring in assessing volcanic hazards in arc settings. (C) 2012 Elsevier B.V. All rights reserved.This is the publisher’s final pdf. The published article is copyrighted by Elsevier and can be found at: http://www.elsevier.com/Keywords: Acoustics, Arc volcanism, Hydrophone monitoring, Hunga Ha'apai-Hunga Tonga Volcano, Surtseyan eruptionKeywords: Acoustics, Arc volcanism, Hydrophone monitoring, Hunga Ha'apai-Hunga Tonga Volcano, Surtseyan eruptio
- …