11 research outputs found
Deployable Aeroshell Flexible Thermal Protection System Testing
Deployable aeroshells offer the promise of achieving larger aeroshell surface areas for entry vehicles than otherwise attainable without deployment. With the larger surface area comes the ability to decelerate high-mass entry vehicles at relatively low ballistic coefficients. However, for an aeroshell to perform even at the low ballistic coefficients attainable with deployable aeroshells, a flexible thermal protection system (TPS) is required that is capable of surviving reasonably high heat flux and durable enough to survive the rigors of construction handling, high density packing, deployment, aerodynamic loading and aerothermal heating. The Program for the Advancement of Inflatable Decelerators for Atmospheric Entry (PAIDAE) is tasked with developing the technologies required to increase the technology readiness level (TRL) of inflatable deployable aeroshells, and one of several of the technologies PAIDAE is developing for use on inflatable aeroshells is flexible TPS. Several flexible TPS layups were designed, based on commercially available materials, and tested in NASA Langley Research Center's 8 Foot High Temperature Tunnel (8ft HTT). The TPS layups were designed for, and tested at three different conditions that are representative of conditions seen in entry simulation analyses of inflatable aeroshell concepts. Two conditions were produced in a single run with a sting-mounted dual wedge test fixture. The dual wedge test fixture had one row of sample mounting locations (forward) at about half the running length of the top surface of the wedge. At about two thirds of the running length of the wedge, a second test surface drafted up at five degrees relative to the first test surface established the remaining running length of the wedge test fixture. A second row of sample mounting locations (aft) was positioned in the middle of the running length of the second test surface. Once the desired flow conditions were established in the test section the dual wedge test fixture, oriented at 5 degrees angle of attack down, was injected into the flow. In this configuration the aft sample mounting location was subjected to roughly twice the heat flux and surface pressure of the forward mounting location. The tunnel was run at two different conditions for the test series: 1) 'Low Pressure', and 2) 'High Pressure'. At 'Low Pressure' conditions the TPS layups were tested at 6W/cm2 and 11W/cm2 while at 'High Pressure' conditions the TPS layups were tested at 11W/cm2 and 20W/cm2. This paper details the test configuration of the TPS samples in the 8Ft HTT, the sample holder assembly, TPS sample layup construction, sample instrumentation, results from this testing, as well as lessons learned
Thermal Analysis and Testing of Candidate Materials for PAIDAE Inflatable Aeroshell
The Program to Advance Inflatable-Decelerators for Atmospheric Entry (PAIDAE) is a NASA project tasked with developing and evaluating viable inflatable-decelerator aeroshell geometries and materials. Thermal analysis of material layups supporting an inflatable aeroshell was completed in order to identify expected material response, failure times, and to establish an experimental test matrix to keep barrier layer materials from reaching critical temperature limits during thermal soak. Material layups were then tested in the 8- foot High Temperature Tunnel (8'HTT), where they were subjected to hypersonic aerothermal heating conditions, similar to those expected for a Mars entry. This paper presents a broad overview of the thermal analysis supporting multiple materials, and layup configurations tested in the 8'HTT at flight conditions similar to those that would be experienced during Mars entry trajectories. Direct comparison of TPS samples tested in the 8'HTT verify that the thermal model accurately predicted temperature profiles when there are up to four materials in the test layup. As the number of material layers in each test layup increase (greater than 4), the accuracy of the prediction decreases significantly. The inaccuracy of the model predictions for layups with more than four material layers is believed to be a result of the contact resistance values used throughout the model being inaccurate. In addition, the harsh environment of the 8'HTT, including hot gas penetrating through the material layers, could also be a contributing factor
Advanced High-Temperature Flexible TPS for Inflatable Aerodynamic Decelerators
Typical entry vehicle aeroshells are limited in size by the launch vehicle shroud. Inflatable aerodynamic decelerators allow larger aeroshell diameters for entry vehicles because they are not constrained to the launch vehicle shroud diameter. During launch, the hypersonic inflatable aerodynamic decelerator (HIAD) is packed in a stowed configuration. Prior to atmospheric entry, the HIAD is deployed to produce a drag device many times larger than the launch shroud diameter. The large surface area of the inflatable aeroshell provides deceleration of high-mass entry vehicles at relatively low ballistic coefficients. Even for these low ballistic coefficients there is still appreciable heating, requiring the HIAD to employ a thermal protection system (TPS). This TPS must be capable of surviving the heat pulse, and the rigors of fabrication handling, high density packing, deployment, and aerodynamic loading. This paper provides a comprehensive overview of flexible TPS tests and results, conducted over the last three years. This paper also includes an overview of each test facility, the general approach for testing flexible TPS, the thermal analysis methodology and results, and a comparison with 8-foot High Temperature Tunnel, Laser-Hardened Materials Evaluation Laboratory, and Panel Test Facility test data. Results are presented for a baseline TPS layup that can withstand a 20 W/cm2 heat flux, silicon carbide (SiC) based TPS layup, and polyimide insulator TPS layup. Recent work has focused on developing material layups expected to survive heat flux loads up to 50 W/cm2 (which is adequate for many potential applications), future work will consider concepts capable of withstanding more than 100 W/cm2 incident radiant heat flux. This paper provides an overview of the experimental setup, material layup configurations, facility conditions, and planned future flexible TPS activities
Aerothermal Ground Testing of Flexible Thermal Protection Systems for Hypersonic Inflatable Aerodynamic Decelerators
Flexible TPS development involves ground testing and analysis necessary to characterize performance of the FTPS candidates prior to flight testing. This paper provides an overview of the analysis and ground testing efforts performed over the last year at the NASA Langley Research Center and in the Boeing Large-Core Arc Tunnel (LCAT). In the LCAT test series, material layups were subjected to aerothermal loads commensurate with peak re-entry conditions enveloping a range of HIAD mission trajectories. The FTPS layups were tested over a heat flux range from 20 to 50 W/cm with associated surface pressures of 3 to 8 kPa. To support the testing effort a significant redesign of the existing shear (wedge) model holder from previous testing efforts was undertaken to develop a new test technique for supporting and evaluating the FTPS in the high-temperature, arc jet flow. Since the FTPS test samples typically experience a geometry change during testing, computational fluid dynamic (CFD) models of the arc jet flow field and test model were developed to support the testing effort. The CFD results were used to help determine the test conditions experienced by the test samples as the surface geometry changes. This paper includes an overview of the Boeing LCAT facility, the general approach for testing FTPS, CFD analysis methodology and results, model holder design and test methodology, and selected thermal results of several FTPS layups
Parity Violation in Elastic Electron-Proton Scattering and the Proton's Strange Magnetic Form Factor
We report a new measurement of the parity-violating asymmetry in elastic electron scattering from the proton at backward scattering angles. This asymmetry is sensitive to the strange magnetic form factor of the proton as well as electroweak axial radiative corrections. The new measurement of A = -4.92±0.61±0.73 ppm provides a significant constraint on these quantities. The implications for the strange magnetic form factor are discussed in the context of theoretical estimates for the axial corrections
Parity Violation in Elastic Electron-Proton Scattering and the Proton's Strange Magnetic Form Factor
We report a new measurement of the parity-violating asymmetry in elastic
electron scattering from the proton at backward scattering angles. This
asymmetry is sensitive to the strange magnetic form factor of the proton as
well as electroweak axial radiative corrections. The new measurement of A=-4.92
+- 0.61 +- 0.73 ppm provides a significant constraint on these quantities. The
implications for the strange magnetic form factor are discussed in the context
of theoretical estimates for the axial corrections.Comment: 4 pages, 3 figures, submitted to Physical Review Letters, Sept 199
Measurement of the vector analyzing power in elastic electron-proton scattering as a probe of double photon exchange amplitudes
We report the first measurement of the vector analyzing power in inclusive
transversely polarized elastic electron-proton scattering at Q^2 = 0.1
(GeV/c)^2 and large scattering angles. This quantity should vanish in the
single virtual photon exchange, plane wave impulse approximation for this
reaction, and can therefore provide information on double photon exchange
amplitudes for electromagnetic interactions with hadronic systems. We find a
non-zero value of A=-15.4+/-5.4 ppm. No calculations of this observable for
nuclei other than spin 0 have been carried out in these kinematics, and the
calculation using the spin orbit interaction from a charged point nucleus of
spin 0 cannot describe these data.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let
Measurement of the vector analyzing power in elastic electron-proton scattering as a probe of double photon exchange amplitudes
We report the first measurement of the vector analyzing power in inclusive transversely polarized elastic electron-proton scattering at Q2 = 0.1 (GeV/c)2 and large scattering angles. This quantity should vanish in the single virtual photon exchange, plane wave impulse approximation for this reaction, and can therefore provide information on double photon exchange amplitudes for electro- magnetic interactions with hadronic systems. We find a non-zero value of A=-15.4±5.4 ppm. No calculations of this observable for nuclei other than spin 0 have been carried out in these kinematics, and the calculation using the spin orbit interaction from a charged point nucleus of spin 0 cannot describe these data