600 research outputs found
Green Aspects in Molecularly Imprinted Polymers by Biomass Waste Utilization
Molecular Imprinting Polymer (MIP) technology is a technique to design artificial receptors with a predetermined selectivity and specificity for a given analyte, which can be used as ideal materials in various application fields. In the last decades, MIP technology has gained much attention from the scientific world as summarized in several reviews with this topic. Furthermore, green synthesis in chemistry is nowadays one of the essential aspects to be taken into consideration in the development of novel products. In accordance with this feature, the MIP community more recently devoted considerable research and development efforts on eco-friendly processes. Among other materials, biomass waste, which is a big environmental problem because most of it is discarded, can represent a potential sustainable alternative source in green synthesis, which can be addressed to the production of high-value carbon-based materials with different applications. This review aims to focus and explore in detail the recent progress in the use of biomass waste for imprinted polymers preparation. Specifically, different types of biomass waste in MIP preparation will be exploited: chitosan, cellulose, activated carbon, carbon dots, cyclodextrins, and waste extracts, describing the approaches used in the synthesis of MIPs combined with biomass waste derivatives
Green Synthesis of Iridium Nanoparticles from Winery Waste and Their Catalytic Effectiveness in Water Decontamination
An environmentally friendly procedure was adopted for the first time to prepare green iridium nanoparticles starting from grape marc extracts. Grape marcs, waste of Negramaro winery production, were subjected to aqueous thermal extraction at different temperatures (45, 65, 80, and 100 °C) and characterized in terms of total phenolic contents, reducing sugars, and antioxidant activity. The results obtained showed an important effect of temperature with higher amounts of polyphenols and reducing sugars and antioxidant activity in the extracts with the increase of temperature. All four extracts were used as starting materials to synthesize different iridium nanoparticles (Ir-NP1, Ir-NP2, Ir-NP3, and Ir-NP4) that were characterized by Uv-Vis spectroscopy, transmission electron microscopy, and dynamic light scattering. TEM analysis revealed the presence of very small particles in all samples with sizes in the range of 3.0â4.5 nm with the presence of a second fraction of larger nanoparticles (7.5â17.0 nm) for Ir-NPs prepared with extracts obtained at higher temperatures (Ir-NP3 and Ir-NP4). Since the wastewater remediation of toxic organic contaminants on catalytic reduction has gained much attention, the application of the prepared Ir-NPs as catalysts towards the reduction of methylene blue (MB), chosen as the organic dye model, was evaluated. The efficient catalytic activity of Ir-NPs in the reduction of MB by NaBH4 was demonstrated and Ir-NP2 was prepared using the extract obtained at 65 °C, showing the best catalytic performance, with a rate constant of 0.527 ± 0.012 minâ1 and MB reduction of 96.1% in just six min, with stability for over 10 months
Polyphenolic Profiling and Antioxidant Activity in Berry Extracts of Pyracantha Wild Varieties from the Mediterranean Region
Pyracantha is a genus of wild perennial shrubs native in an area extending from Southwest Europe to Southeast Asia, and it is used in traditional medicine for the diuretic, cardiac, and tonic properties of its fruits, which can also be cooked to make jellies, jams, and sauces. This work aims to study and compare the antioxidant activity and the phenolic and anthocyanin composition of three varieties of Pyracantha coccinea: Red Column (PCR), Orange Glow (PCO), and Soleil dâOr (PCS), and one of Pyracantha angustifolia: Orange glow (PAO), collected from the spontaneous flora of the Mediterranean region (Southern Italy). Two different extraction processes were tested using methanol and an aqueous methanol solution (80% MeOH) to evaluate the polyphenolic content and antioxidant activity of freeze-dried berries. The highest total phenolic content was found in PCR and PAO berries (174.21 ± 0.149 and 168.01 ± 0.691 mg of gallic acid equivalent per gram of dry matter, respectively) extracted with an aqueous methanol solution (80% MeOH). Polyphenolic extracts analyzed by HPLC-DAD-ESI/MS confirmed the presence of rutin, quercetin hexose, neoeriocitrin, procyanidin B, and resveratrol. Moreover, the total antioxidant activity of the berriesâ extracts was measured by comparing two different spectrophotometric methods (ABTS and DPPH), showing that the varieties with the highest total phenolic content, PCR and PAO, also had the highest scavenging activity. Finally, a suitable extraction process was chosen for the evaluation of the anthocyaninsâ composition of all frozen berries, and in all MS spectra of Pyracantha varieties, two ionic species at 449 m/z attributable to two cyanidin derivatives were found. © 2024 by the authors
Raclopride-Molecularly Imprinted Polymers: A Promising Technology for Selective [11C]Raclopride Purification
In this work, we developed a novel approach to purify [C-11]Raclopride ([C-11]RAC), an important positron emission tomography radiotracer, based on tailored shape-recognition polymers, with the aim to substitute single-pass HPLC purification with an in-flow trap & release process. Molecular imprinting technology (MIT) applied to solid phase extraction (MISPE) was investigated to develop a setting able to selectively extract [C-11]RAC in a mixture containing a high amount of its precursor, (S)-O-Des-Methyl-Raclopride (DM-RAC). Two imprinted polymers selective for unlabeled RAC and DM-RAC were synthesized through a radical polymerization at 65 degrees C using methacrylic acid and trimethylolpropane trimethacrylate in the presence of template molecule (RAC or DM-RAC). The prepared polymer was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy and tested in MISPE experiments. The polymers were used in testing conditions, revealing a high retention capacity of RAC-MISPE to retain RAC either in the presence of similar concentrations of RAC and DM-RAC precursor (96.9%, RSD 6.6%) and in the presence of a large excess of precursor (90%, RSD 4.6%) in the loading solution. Starting from these promising results, preliminary studies for selective purification of [C-11]Raclopride using this RAC-MISPE were performed and, while generally confirming the selectivity capacity of the polymer, revealed challenging applicability to the current synthetic process, mainly due to high backpressures and long elution times
Evaluation of Effective Composite Biosorbents Based on Wood Sawdust and Natural Clay for Heavy Metals Removal from Water
Bentonitic clay and wood sawdust are natural materials widely available in nature at low cost with high heavy metals sorption properties that, in this work, were combined to achieve an effective composite biosorbent with high sorption properties and enhanced mechanical stability. Pine, aspen, and birch wood sawdust, as well as different bentonite clays and different sawdust modification methods (H3PO4 or HCl) were used for preparing new composite biosorbents. A mixture of wood sawdust and bentonite in a ratio of 2:1 was used. All materials were characterized by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM) methods and tested for Cu and Ni ions removal from water. The adsorption process for all composite biosorbents was well described from a pseudo-second order kinetic model (R-2 > 0.9999) with a very high initial adsorption rate of Cu and Ni ions and a maximum uptake recorded within 2 h. The results have shown that the adsorption capacity depends mainly on the kind of wood and the acid treatment of the wood that enhances the adsorption capacity. At a concentration of 50 mg/L, the biosorbent prepared using birch wood sawdust showed the worst performance, removing barely 30% of Cu and Ni ions, while aspen wood sawdust improved the adsorption of Cu (88.6%) and Ni (52.4%) ions. Finally, composite biosorbent with pine wood sawdust showed the best adsorption be haviour with an efficiency removal of 98.2 and 96.3% of Cu and Ni ions, respectively, making it a good candidate as an inexpensive and effective biosorbent for the removal of heavy metals
Sustainable and Reusable Modified Membrane Based on Green Gold Nanoparticles for Efficient Methylene Blue Water Decontamination by a Photocatalytic Process
: Methylene blue (MB) is a dye hazardous pollutant widely used in several industrial processes that represents a relevant source of water pollution. Thus, the research of new systems to avoid their environmental dispersion represents an important goal. In this work, an efficient and sustainable nanocomposite material based on green gold nanoparticles for MB water remediation was developed. Starting from the reducing and stabilizing properties of some compounds naturally present in Lambrusco winery waste (grape marc) extracts, green gold nanoparticles (GM-AuNPs) were synthesized and deposited on a supporting membrane to create an easy and stable system for water MB decontamination. GM-AuNPs, with a specific plasmonic band at 535 nm, and the modified membrane were first characterized by UV-vis spectroscopy, X-ray diffraction (XRD), and electron microscopy. Transmission electron microscopy analysis revealed the presence of two breeds of crystalline shapes, triangular platelets and round-shaped penta-twinned nanoparticles, respectively. The crystalline nature of GM-AuNPs was also confirmed from XRD analysis. The photocatalytic performance of the modified membrane was evaluated under natural sunlight radiation, obtaining a complete disappearance of MB (100%) in 116 min. The photocatalytic process was described from a pseudo-first-order kinetic with a rate constant (k) equal to 0.044 ± 0.010 min-1. The modified membrane demonstrated high stability since it was reused up to 20 cycles, without any treatment for 3 months, maintaining the same performance. The GM-AuNPs-based membrane was also tested with other water pollutants (methyl orange, 4-nitrophenol, and rhodamine B), revealing a high selectivity towards MB. Finally, the photocatalytic performance of GM-AuNPs-based membrane was also evaluated in real samples by using tap and pond water spiked with MB, obtaining a removal % of 99.6 ± 1.2% and 98.8 ± 1.9%, respectively
cardanol based green nanovesicles with antioxidant and cytotoxic activities
ABSTRACTThis manuscript describes the preparation of green nanovesicles by using cardanol as renewable starting material with embedded minor amounts of phthalazines, a class of heterocyclic bioactive compounds. The nanovesicles were prepared by stirring induced self-assembly in aqueous medium without involvement of any organic solvent. Dynamic light scattering studies and transmission electron microscopy revealed the formation of nanostructure with an average diameter in the range of 227â375 nm and a well defined spherical morphology. Potential antioxidant activity of nanovesicles were evaluated for the first time by 2,2âČ-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) scavenging assay and bleomycin-dependent DNA damage. Moreover, their cytotoxic effects were also investigated by 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay on different tumour cell lines. Unloaded nanovesicles showed moderate antioxidant and antitumoural activity that was further enhanced particularl..
Synthesis of Molecularly Imprinted Polymers for Amino Acid Derivates by Using Different Functional Monomers
Fmoc-3-nitrotyrosine (Fmoc-3-NT) molecularly imprinted polymers (MIPs) were synthesized to understand the influence of several functional monomers on the efficiency of the molecular imprinting process. Acidic, neutral and basic functional monomers, such as acrylic acid (AA), methacrylic acid (MAA), methacrylamide (MAM), 2-vinylpyridine (2-VP), 4-vinylpyridine (4-VP), have been used to synthesize five different polymers. In this study, the MIPs were tested in batch experiments by UV-visible spectroscopy in order to evaluate their binding properties. The MIP prepared with 2-VP exhibited the highest binding affinity for Fmoc-3NT, for which Scatchard analysis the highest association constant (2.49 Ă 104 Mâ1) was obtained. Furthermore, titration experiments of Fmoc-3NT into acetonitrile solutions of 2-VP revealed a stronger bond to the template, such that a total interaction is observed. Non-imprinted polymers as control were prepared and showed no binding affinities for Fmoc-3NT. The results are indicative of the importance of ionic bonds formed between the âOH residues of the template molecule and the pyridinyl groups of the polymer matrix. In conclusion, 2-VP assists to create a cavity which allows better access to the analytes
Zinc PorphyrinâDriven Assembly of Gold Nanofingers
Nanofingers of gold covered by porphyrins are prepared by a combination of atomic manipulation and surface self-organization. A submonolayer of zinc(II) 5,10,15,20-tetrakis(4-tert-butylphenyl)-porphyrin (ZnTBPP) axially ligated to a self-assembled monolayer of 4-aminothiophenol (4-ATP) on Au(111) is prepared and studied using a combination of ultrahigh vacuum techniques. Under the electric field produced by the STM tip, the relatively weakly bound Au surface atoms along the discommensuration lines become mobile due to the strong bond to 4-ATP, while the tendency of the porphyrins towards self-assembly result in a collective motion of gold clusters. The clusters diffuse onto the surface following well-defined pathways along the [112] direction and then reach the step edges where they assembled, thus forming nanofingers. First-principles density functional theory calculations demonstrate the reduction of the binding energies between the surface gold clusters and the substrate induced by adsorption of thiols. Scanning tunneling microscopy images show assemblies across three adjacent discommensuration lines of the Au(111)-(22 x square root 3) reconstruction, which collectively diffuse along these lines to form islands nucleated at step edges
Rectification in supramolecular zinc porphyrin/fulleropyrrolidine dyads self-organized on gold(111).
Self-assembled donor/acceptor dyads are of current interest as they are biomimetic to the natural photosynthetic conversion system. Herein, we present an ultrahigh-vacuum scanning tunneling microscopy and scanning tunneling spectroscopy (UHV-STM/STS) study of ex situ self-assembled supramolecular dyads consisting of fulleropyrrolidines (PyC 2 C 60 ) axially ligated to zinc(II) tetraphenylporphyrin (ZnTPP), self organized on a 4-aminothiophenol (4-ATP) self-assembled monolayer on gold-(111). These dyads show both bias-polarity-dependent apparent height in STM images and highly rectifying behavior in tunneling spectroscopy. First-principles density functional theory calculations clarify the conformational and electronic properties of the 4-ATP/ZnTPP/PyC 2 C 60 system. Interestingly, we find easier tunneling for electrons moving from the acceptor side of the dyads to the donor side, in the inverse-rectifying sense with respect to previously reported molecular rectifiers. Such behavior cannot be explained as an elastic resonant tunneling process, but it can by using a model based on the Aviram-Ratner mechanism
- âŠ