8 research outputs found

    The 2016–2017 earthquake sequence in Central Italy: macroseismic survey and damage scenario through the EMS-98 intensity assessment

    Get PDF
    In this paper we describe the macroseismic effects produced by the long and destructive seismic sequence that hit Central Italy from 24 August 2016 to January 2017. Starting from the procedure adopted in the complex field survey, we discuss the characteristics of the building stock and its classification in terms of EMS-98 as well as the issues associated with the intensity assessment due to the evolution of damage caused by multiple shocks. As a result, macroseismic intensity for about 300 localities has been determined; however, most of the intensities assessed for the earthquakes following the first strong shock on 24 August 2016, represent the cumulative effect of damage during the sequence. The earthquake parameters computed from the macroseismic datasets are compared with the instrumental determinations in order to highlight critical issues related to the assessment of macroseismic parameters of strong earthquakes during a seismic sequence. The results also provide indications on how location and magnitude computation can be strongly biased when dealing with historical seismic sequences.Presidenza del Consiglio dei Ministri - Dipartimento della Protezione Civile (DPC)Published2407–24314T. Sismicità dell'Italia1SR TERREMOTI - Sorveglianza Sismica e Allerta Tsunami2SR TERREMOTI - Gestione delle emergenze sismiche e da maremoto5SR TERREMOTI - Convenzioni derivanti dall'Accordo Quadro decennale INGV-DPCJCR Journa

    Quest- Rilievo Macrosismico Per Il Terremoto Dell'Isola Di Ischia Del 21 Agosto 2017

    No full text
    Preliminary report of the Macroseismic field survey after the Ischia island earthquake that occurred on 21 August 2017INGVPublished4T. Sismologia, geofisica e geologia per l'ingegneria sismic

    Quest- Rilievo Macrosismico Per Il Terremoto Dell'Isola Di Ischia Del 21 Agosto 2017

    No full text
    Final report of the Macroseismic field survey after the Ischia island earthquake that occurred on 21 August 2017INGVPublished4T. Sismologia, geofisica e geologia per l'ingegneria sismic

    High-rate (1 Hz to 20 Hz) GPS coseismic dynamic displacements carried out during the Emilia 2012 seismic sequence

    Get PDF
    In May-July 2012, Emilia Romagna (northern Italy) was struck by a significant seismic sequence, which was characterized by two moderate-magnitude earthquakes: a Ml 5.9 event on May 20, 2012, at 02:03:53 UTC, and a Ml 5.8 event on May 29, 2012, at 07:00:03 UTC, about 12 km to the west of the first mainshock. The earthquake sequence produced a total of 20 casualties and severe and widespread damage, mainly to historical and commercial buildings. A detailed description of the seismic sequence can be found in Sco-gnamiglio et al. [2012, this volume]. The largest of the earthquake static displacements were recorded by tens of continuous global positioning system (cGPS) stations, as described in Serpelloni et al. [2012, this volume]. Most of these stations were operating with a sampling frequency of 1 Hz, and they belonged to scientific or commercial networks: RING (http://ring.gm.ingv.it); ITALPOS (http://smartnet.leica-geosystems.it); GeoTop (http://www.netgeo.it); Fondazione Geometri Emilia Romagna (http://www.gpsemiliaromagna.it; Lombardia [http://www.gpslombardia.it); and Veneto (http://147.162.229.63). Some hours after the first mainshock, the sampling frequency of the near-field RING stations (SBPO and MODE) were switched to 20 Hz, thus recording the coseismic displacements produced by the May 29, 2012, earthquake at higher frequency. This sampling frequency was previously used for the detection of coseismic dynamic displacements only for the Mw 9 Tohoku-Oki 2011 event [Colosimo et al. 2011b]. Thus, the 20-Hz-sampling displacements for the Tohoku-Oki 2011 earthquake and the May 29, 2012, Emilia event might represent important recordings to investigate coseismic contributions at frequencies higher than 1 Hz with GPS. In the present study, after the description of the high-rate GPS (HRGPS) data analysis, we will show and compare the preliminary results. Then, for the two mainshocks, we will compare the displacements recorded by the HRGPS (1 Hz up to 20 Hz) and the strong-motion time histories (100 Hz) at MODE, where the different instruments were approximately co-located (Figure 1, inset, relative distance of ca. 90 m). […

    The Emilia 2012 sequence: a macroseismic survey

    Get PDF
    On May 20, 2012, at 4:03 local time (2:03 UTC), a large part of the Po Valley between the cities of Ferrara, Modena and Mantova was struck by a damaging earthquake (Ml 5.9). The epicenter was located by the Istituto Nazionale di Geo-fisica e Vulcanologia (INGV) seismic network [ISIDe 2010] at 44.889 ˚N and 11.228 ˚E, approximately 30 km west of Ferrara (Figure 1). The event was preceded by a foreshock that occurred at 01:13 local time, with a magnitude of Ml 4. The mainshock started an intense seismic sequence that lasted for weeks, counting more than 2,000 events, six of which had Ml >5. The strongest earthquakes of this sequence occurred on May 29, 2012, with Ml 5.8 and Ml 5.3, recorded at 9:00 and 12:55 local time, respectively. The epicenters of the May 29, 2012, events were located at the westernmost part of the rupture zone of the May 20, 2012, earthquake (Figure 2). The May 20 and 29, 2012, earthquakes were felt through the whole of northern and central Italy, and as far as Switzerland, Slovenia, Croatia, Austria, south-eastern France and southern Germany. Historical information reveals that the seismic activity in the Po Valley is moderate […

    GPS observations of coseismic deformation following the May 20 and 29, 2012, Emilia seismic events (northern Italy): data, analysis and preliminary models

    No full text
    In May-July 2012, a seismic sequence struck a broad area of the Po Plain Region in northern Italy. The sequence included two Ml >5.5 mainshocks. The first one (Ml 5.9) occurred near the city of Finale Emilia (ca. 30 km west of Ferrara) on May 20 at 02:03:53 (UTC), and the second (Ml 5.8) occurred on May 29 at 7:00:03 (UTC), about 12 km southwest of the May 20 mainshock (Figure 1), near the city of Mirandola. The seismic sequence involved an area that extended in an E-W direction for more than 50 km, and included seven Ml ≥5.0 events and more than 2,300 Ml >1.5 events (http://iside.rm.ingv.it). The focal mechanisms of the main events [Pondrelli et al. 2012, Scognamiglio et al. 2012, this volume] consistently showed compressional kinematics with E-W oriented reverse nodal planes. This sector of the Po Plain is known as a region characterized by slow deformation rates due to the northwards motion of the northern Apennines fold-and-thrust belt, which is buried beneath the sedimentary cover of the Po Plain [Picotti and Pazzaglia 2008, Toscani et al. 2009]. Early global positioning system (GPS) measurements [Serpelloni et al. 2006] and the most recent updates [Devoti et al. 2011, Bennett et al. 2012] recognized that less than 2 mm/yr of SW-NE shortening are accommodated across this sector of the Po Plain, in agreement with other present-day stress indicators [Montone et al. 2012] and known active faults [Basili et al. 2008]. In the present study, we describe the GPS data used to study the coseismic deformation related to the May 20 and 29 mainshocks, and provide preliminary models of the two seismic sources, as inverted from consensus GPS coseismic deformation fields. […

    The 24 August 2016 Amatrice earthquake: macroseismic survey in the damage area and EMS intensity assessment

    Get PDF
    The 24 August 2016 earthquake very heavily struck the central sector of the Apennines among the Lazio,Umbria, Marche and Abruzzi regions, devastating the town of Amatrice, the nearby villages and other localities along the Tronto valley. In this paper we present the results of the macroseismic field survey carried out using the European Macroseismic Scale (EMS) to take the heterogeneity of the building stock into account. We focused on the epicentral area, where geological conditions may also have contributed to the severity of damage. On the whole, we investigated 143 localities; the maximum intensity 10 EMS has been estimated for Amatrice, Pescara del Tronto and some villages in between. The severely damaged area (8-9 EMS) covers a strip trending broadly N-S and extending 15 km in length and 5 km in width; minor damage occurred over an area up to 35 km northward from the epicenter
    corecore