6,993 research outputs found

    Dimensionalities of Weak Solutions in Hydrogenic Systems

    Full text link
    A close inspection on the 3D hydrogen atom Hamiltonian revealed formal eigenvectors often discarded in the literature. Although not in its domain, such eigenvectors belong to the Hilbert space, and so their time evolution is well defined. They are then related to the 1D and 2D hydrogen atoms and it is numerically found that they have continuous components, so that ionization can take place

    Long-time discrete particle effects versus kinetic theory in the self-consistent single-wave model

    Get PDF
    The influence of the finite number N of particles coupled to a monochromatic wave in a collisionless plasma is investigated. For growth as well as damping of the wave, discrete particle numerical simulations show an N-dependent long time behavior resulting from the dynamics of individual particles. This behavior differs from the one due to the numerical errors incurred by Vlasov approaches. Trapping oscillations are crucial to long time dynamics, as the wave oscillations are controlled by the particle distribution inhomogeneities and the pulsating separatrix crossings drive the relaxation towards thermal equilibrium.Comment: 11 pages incl. 13 figs. Phys. Rev. E, in pres

    Relaxation times of unstable states in systems with long range interactions

    Full text link
    We consider several models with long-range interactions evolving via Hamiltonian dynamics. The microcanonical dynamics of the basic Hamiltonian Mean Field (HMF) model and perturbed HMF models with either global anisotropy or an on-site potential are studied both analytically and numerically. We find that in the magnetic phase, the initial zero magnetization state remains stable above a critical energy and is unstable below it. In the dynamically stable state, these models exhibit relaxation time scales that increase algebraically with the number NN of particles, indicating the robustness of the quasistationary state seen in previous studies. In the unstable state, the corresponding time scale increases logarithmically in NN.Comment: Minor change

    A nonstationary generalization of the Kerr congruence

    Full text link
    Making use of the Kerr theorem for shear-free null congruences and of Newman's representation for a virtual charge ``moving'' in complex space-time, we obtain an axisymmetric time-dependent generalization of the Kerr congruence, with a singular ring uniformly contracting to a point and expanding then to infinity. Electromagnetic and complex eikonal field distributions are naturally associated with the obtained congruence, with electric charge being necesssarily unit (``elementary''). We conjecture that the corresponding solution to the Einstein-Maxwell equations could describe the process of continious transition of the naked ringlike singularitiy into a rotating black hole and vice versa, under a particular current radius of the singular ring.Comment: 6 pages, twocolum

    One-Loop Supergravity Corrections to the Black Hole Entropy and Residual Supersymmetry

    Get PDF
    We study the one-loop corrections to the effective on-shell action of N=2 supergravity in the background of the Reissner-Nordstrom black hole. In the extreme case the contributions from graviton, gravitino and photon to the one-loop corrections to the entropy are shown to cancel. This gives the first explicit example of the supersymmetric non-renormalization theorem for the on-shell action (entropy) for BPS configurations which admit Killing spinors. We display the residual supersymmetry of the perturbations of a general supersymmetric theory in a bosonic BPS background.Comment: 13 Pages, LaTe

    Electrodynamics with Lorentz-violating operators of arbitrary dimension

    Get PDF
    The behavior of photons in the presence of Lorentz and CPT violation is studied. Allowing for operators of arbitrary mass dimension, we classify all gauge-invariant Lorentz- and CPT-violating terms in the quadratic Lagrange density associated with the effective photon propagator. The covariant dispersion relation is obtained, and conditions for birefringence are discussed. We provide a complete characterization of the coefficients for Lorentz violation for all mass dimensions via a decomposition using spin-weighted spherical harmonics. The resulting nine independent sets of spherical coefficients control birefringence, dispersion, and anisotropy. We discuss the restriction of the general theory to various special models, including among others the minimal Standard-Model Extension, the isotropic limit, the case of vacuum propagation, the nonbirefringent limit, and the vacuum-orthogonal model. The transformation of the spherical coefficients for Lorentz violation between the laboratory frame and the standard Sun-centered frame is provided. We apply the results to various astrophysical observations and laboratory experiments. Astrophysical searches of relevance include studies of birefringence and of dispersion. We use polarimetric and dispersive data from gamma-ray bursts to set constraints on coefficients for Lorentz violation involving operators of dimensions four through nine, and we describe the mixing of polarizations induced by Lorentz and CPT violation in the cosmic-microwave background. Laboratory searches of interest include cavity experiments. We present the theory for searches with cavities, derive the experiment-dependent factors for coefficients in the vacuum-orthogonal model, and predict the corresponding frequency shift for a circular-cylindrical cavity.Comment: 58 pages two-column REVTeX, accepted in Physical Review

    Entropy of a Kerr-de Sitter black hole due to arbitrary spin fields

    Full text link
    The Newman-Penrose formalism is used to derive the Teukolsky master equations controlling massless scalar, neutrino, electromagnetic, gravitino, and gravitational field perturbations of the Kerr-de Sitter spacetime. Then the quantum entropy of a non-extreme Kerr-de Sitter black hole due to arbitrary spin fields is calculated by the improved thin-layer brick wall model. It is shown that the subleading order contribution to the entropy is dependent on the square of the spins of particles and that of the specific angular momentum of black holes as well as the cosmological constant. The logarithmic correction of the spins of particles to the entropy relies on the rotation of the black hole and the effect of the cosmological constant.Comment: 28 pages, two figures, Revtex4.0. Final revised version to appear in PR

    MAXIMA: an experiment to measure temperature anisotropy in the cosmic microwave background

    Get PDF
    We describe the MAXIMA experiment, a balloon-borne measurement designed to map temperature anisotropy in the Cosmic Microwave Background (CMB) over a wide range of angular scales (multipole range 80 < l < 800). The experiment consists of a 1.3 m diameter off-axis Gregorian telescope and a receiver with a 16 element array of bolometers cooled to 100 mK. The frequency bands are centered at 150, 240, and 410 GHz. The 10' FWHM beam sizes are well matched to the scale of acoustic peaks expected in the angular power spectrum of the CMB. The first flight of the experiment in its full configuration was launched in August 1998. A 122 sq-deg map of the sky was made near the Draco constellation during the 7 hour flight in a region of extremely low galactic dust contamination. This map covers 0.3% of the sky and has 3200 independent beamsize pixels. We describe the MAXIMA instrument and its performance during the recent flight.Comment: To appear in proceedings of `3K Cosmology', ed. F Melchiorri, Conference held Oct 5-10 1998, Rome, 13 pages LaTeX (using aipproc2.sty & aipproc2.cls), Postscript with higher resolution graphics available at http://cfpa.berkeley.edu/group/cmb/gen.htm

    Mapping gravitational-wave backgrounds using methods from CMB analysis: Application to pulsar timing arrays

    Get PDF
    We describe an alternative approach to the analysis of gravitational-wave backgrounds, based on the formalism used to characterise the polarisation of the cosmic microwave background. In contrast to standard analyses, this approach makes no assumptions about the nature of the background and so has the potential to reveal much more about the physical processes that generated it. An arbitrary background can be decomposed into modes whose angular dependence on the sky is given by gradients and curls of spherical harmonics. We derive the pulsar timing overlap reduction functions for the individual modes, which are given by simple combinations of spherical harmonics evaluated at the pulsar locations. We show how these can be used to recover the components of an arbitrary background, giving explicit results for both isotropic and anisotropic uncorrelated backgrounds. We also find that the response of a pulsar timing array to curl modes is identically zero, so half of the gravitational-wave sky will never be observed using pulsar timing, no matter how many pulsars are included in the array. An isotropic, unpolarised and uncorrelated background can be accurately represented using only three modes, and so a search of this type will be only slightly more complicated than the standard cross-correlation search using the Hellings and Downs overlap reduction function. However, by measuring the components of individual modes of the background and checking for consistency with isotropy, this approach has the potential to reveal much more information. Each individual mode on its own describes a background that is correlated between different points on the sky. A measurement of the components that indicates the presence of correlations in the background on large angular scales would suggest startling new physics.Comment: 48 pages, 16 figures, to appear in Phys. Rev. D; v2 contains various changes in response to the referee report and is consistent with published versio

    Periodontitis and Cardiovascular Diseases. Consensus Report

    Get PDF
    Background: In Europe cardiovascular disease (CVD) is responsible for 3.9 million deaths (45% of deaths), being ischaemic heart disease, stroke, hypertension (leading to heart failure) the major cause of these CVD related deaths. Periodontitis is also a chronic non-communicable disease (NCD) with a high prevalence, being severe periodontitis, affecting 11.2% of the world's population, the sixth most common human disease. Material and Methods: There is now a significant body of evidence to support independent associations between severe periodontitis and several NCDs, in particular CVD. In 2012 a joint workshop was held between the European Federation of Periodontology (EFP) and the American Academy of Periodontology to review the literature relating periodontitis and systemic diseases, including CVD. In the last five years important new scientific information has emerged providing important emerging evidence to support these associations. Results and Conclusions: The present review reports the proceedings of the workshop jointly organised by the EFP and the World Heart Federation (WHF), which has updated the existing epidemiological evidence for significant associations between periodontitis and CVD, the mechanistic links and the impact of periodontal therapy on cardiovascular and surrogate outcomes. This review has also focused on the potential risk and complications of periodontal therapy in patients on anti thrombotic therapy and has made recommendations for dentists, physicians and for patients visiting both the dental and medical practices
    • …
    corecore