4,522 research outputs found

    On finite-size effects in computer simulations using the Ewald potential

    Full text link
    We discuss the origin and relevance for computer simulations of a strong finite-size effect that appears when using the Ewald summation formula. It can be understood as arising from a volume-dependent shift of the potential in a finite, periodic box relative to the infinite volume limit. This shift is due to the fact that the ``zero of energy'' for a periodic system cannot be defined by letting the interacting particles be separated by an infinite distance; the correct definition corresponds to setting its \bbox k=\bbox 0 Fourier mode to zero. The implications of this effect for computer simulations are discussed.Comment: Submitted to Journal of Chemical Physic

    Can VMD improve the estimate of the muon g-2 ?

    Full text link
    We show that a VMD based theoretical input allows for a significantly improved accuracy for the hadronic vacuum polarization of the photon which contributes to the theoretical estimate of the muon g-2. We also show that the only experimental piece of information in the τ\tau decay which cannot be accounted for is the accepted value for {\rm Br}(\tau \ra \pi \pi \nu_\tau), while the spectum lineshape is in agreement with expectations from e+e−e^+ e^- annihilations.Comment: 6 pages, 1 figure Proceedings of the PhiPsi09, Oct. 13-16, 2009, Beijing, Chin

    Analyzing How BERT Performs Entity Matching

    Get PDF
    State-of-the-art Entity Matching (EM) approaches rely on transformer architectures, such as BERT, for generating highly contextualized embeddings of terms. The embeddings are then used to predict whether pairs of entity descriptions refer to the same real-world entity. BERT-based EM models demonstrated to be effective, but act as black-boxes for the users, who have limited insight into the motivations behind their decisions. In this paper, we perform a multi-facet analysis of the components of pre-trained and fine-tuned BERT architectures applied to an EM task. The main findings resulting from our extensive experimental evaluation are (1) the fine-tuning process applied to the EM task mainly modifies the last layers of the BERT components, but in a different way on tokens belonging to descriptions of matching / non-matching entities; (2) the special structure of the EM datasets, where records are pairs of entity descriptions is recognized by BERT; (3) the pair-wise semantic similarity of tokens is not a key knowledge exploited by BERT-based EM models

    Reconstruction and Particle Identification for a DIRC System

    Get PDF
    We study the reconstruction and particle identification (PID) problem for Ring Imaging devices providing a good knowledge of the direction of the Cerenkov photons, as the DIRC system, on which we specialize. We advocate first the use of the stereographic projection as a tool allowing a suitable representation of the photon data, as it allows to represent the Cerenkov cone always as a circle. We set up an algorithm able to perform reliably a fit of circle arcs of small angular opening, by minimising a true Chi2 expression. The system we develop for PID relies on this algorithm and on a procedure able to remove background photons with a high efficiency. We thus show that, even when the background is large, it is possible to perform an efficient PID by means of a fit algorithm which finally provides all the circle parameters; these are connected with the charged track direction and its Cerenkov angle. It is shown that background effects can be dealt without spoiling significantly the reconstruction probability distributions.Comment: 67 pages, 23 figure

    Low NT-proBNP levels in overweight and obese patients do not rule out a diagnosis of heart failure with preserved ejection fraction

    Get PDF
    Background Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome that presents clinicians with a diagnostic challenge. The use of natriuretic peptides to exclude a diagnosis of HFpEF has been proposed. We sought to compare HFpEF patients with N-terminal pro-brain natriuretic peptide (NT-proBNP) level above and below the proposed cut-off. Methods Stable patients (n = 30) with left ventricular (LV) ejection fraction ≥ 50% were eligible if they had a diagnosis of HF according to the European Society of Cardiology diagnostic criteria. Characteristics of patients with NT-proBNP below (≤125 pg/mL) and above (\u3e125 pg/mL) the diagnostic criterion were compared. Results There were 19 (66%) women with median age 54 years. Half were African American (16, 53%), and most were obese. There were no significant differences in clinical characteristics or medication use between groups. LV end-diastolic volume index was greater in high NT-proBNP patients (P = 0.03). Left atrial volume index, E/e\u27 ratio, and E/e\u27 ratio at peak exercise were not significantly different between NT-proBNP groups. Peak oxygen consumption (VO2), VO2 at ventilatory threshold, and ventilatory efficiency measures were impaired in all patients and were not significantly different between high and low NT-proBNP patients. Conclusions NT-proBNP was below the proposed diagnostic cut-off point of 125 pg/mL in half of this obese study cohort. Cardiac diastolic dysfunction and cardiorespiratory fitness were not significantly different between high and low NT-proBNP patients. These data indicate that excluding the diagnosis of HFpEF based solely on NT-proBNP levels should be discouraged

    Optimal stent design for high bleeding risk patients: Evidence from a network meta-analysis

    Get PDF
    Objective. To determine the best stent design for high bleeding risk (HBR) patients. Background. Polymer-free (PF) drug eluting stent (DES) devices have a proven benefit over bare-metal stent (BMS) devices in previous trials. It is unknown, however, whether polymer-based (PB)-DES devices are as safe as PF-DES devices. Methods. A network meta-analysis including all randomized controlled trials (RCTs) that compared different stent technology in HBR patients with a 1-month course of dual-antiplatelet therapy (DAPT) was performed. The main efficacy outcome was major adverse cardiac event (MACE) rate, defined as the composite of all-cause mortality, myocardial infarction (MI), and target-lesion revascularization (TLR). Secondary efficacy events included all-cause and cardiac mortality, MI, stroke, TLR, and target-vessel revascularization (TVR). Safety outcomes included all bleeding, major bleeding, and stent thrombosis (ST). Results. A total of 4 RCTs with 6456 patients were included. PF-DES and PB-DES yielded a reduced rate of MACE, MI, TLR, and TVR events compared with BMS (all P<.05). ST events were reduced in PB-DES compared with BMS (P=.01). No differences were found in all-cause death, cardiac death, or stroke events in PF-DES and PB-DES compared with BMS. Furthermore, no differences were found between PF-DES and PB-DES regarding any of the outcomes. Conclusion. DES devices were associated with lower MACE and TVR rates compared with BMS, whereas there were no statistical differences in other efficacy endpoints. Also, PB-DES were associated with fewer ST events compared with BMS. There were no statistical differences between PB-DES and PF-DES with regard to any of the endpoints. t 2021 HMP Comm Personal Use Onl
    • …
    corecore