36 research outputs found

    Evaluation of biofilm formation on acrylic resin surfaces coated with silicon dioxide: an in situ study.

    Get PDF
    Biofilm on acrylic resin dental prostheses may cause gingival inflammation. This study evaluated the influence of a silicon dioxide coating layer applied onto acrylic resin on the adhesion of microorganisms. Blocks (5 x 5 x 3 mm) of acrylic resin were evaluated for surface roughness and divided into two groups: control (CG) and coated with silicon dioxide (LG group). The specimens were evaluated by scanning electron microscopy (n = 1) and by contact angle analysis (n = 3). For the in situ study, 20 volunteers wore acrylic palatal devices containing three samples from each group (n = 60) for 2 days. The biofilm formed was quantified by metabolic activity and total biomass using the crystal violet assay. The results were subjected to Bartlett's normality test and Gamma model with random effect for the response variable (α = 5%). The mean contact angle of the coated group was significantly lower than that of the uncoated group (p < 0.05). The metabolic activity of microorganisms in the biofilm on the blocks treated with coating was significantly lower than that of control blocks (p = 0.02). Regarding the amount of extracellular matrix produced by the microorganisms, there was no difference between the CG and LG group (p = 0.05). The application of a silicon dioxide coating on acrylic resin reduced the activity of the polymicrobial biofilm formed in situ. This coating may be advantageous for patients with conventional complete dentures or implants made of acrylic resin and who have motor difficulties that prevent them from cleaning their prostheses properly

    Surface texture and some properties of acrylic resins submitted to chemical polishing

    No full text
    The effects of chemical polishing on dental acrylic resin properties are not well clarified. This study evaluated the effect of chemical and mechanical polishing on the residual monomer release (RM), Knoop hardness (KH), transverse strength (TS) and surface texture (ST) of a heat- and self-cured acrylic resin. Four groups were formed: GI-self-cured resin/mechanical polishing; GII-self-cured resin/chemical polishing; GIII-heat-cured resin/mechanical polishing; GIV-heat-cured resin/chemical polishing. Following the polishing procedures, specimens were stored in distilled water at 37 degreesC. The KH and RM measurements were taken after 1, 2, 8 and 32 days of storage, and TS after 2, 8 and 32 days. Surface texture was observed under SEM evaluation. Results were compared statistically at a confidence level of 95%. The following conclusions were drawn: (1) regardless of the acrylic resin and the period of analysis, chemical polishing increased RM levels, reduced KH, and did not affect TS significantly; (2) water storage increased the surface hardness of GII and GIV; (3) GII and GIV showed a smooth and wavy surface under SEM evaluation.301919

    Candida albicans biofilm development characteristics on different poly(methyl-methacrylate) resins

    No full text

    Antifungal susceptibility of Candida albicans biofilm on poly(methyl-methacrylate)

    No full text
    corecore