17 research outputs found

    Off balance: Regulatory and effector T cells in the pathogenesis of ANCA associated vasculitis

    Get PDF
    Anti-neutrophil cytoplasmatic auto-antibody (ANCA) associated vasculitis (AAV) are a group of systemic autoimmune diseases in which small to medium sized vessels are inflamed. Although the disease etiology is not fully understood, it has been shown that T lymphocytes play a major role in the pathogenesis. In this thesis Dekkema studied the balance between regulatory T (Tregs) and effector T (Teffs) cells in AAV. In this thesis, Dekkema studied why Tregs in AAV have a diminished suppressive function and found that this is partly due to increased expression of microRNAs. microRNAs can inhibit protein synthesis. Tregs of AAV patients had higher levels of miR-142-3p which led to diminished function. Interestingly, the diminished function due to miR-142-3p overexpression could be restored in vitro with Treg stimulating medication. Moreover, also the expression of markers on Tregs, which are also important for their function, were changed. Tregs of patients that experienced a relapse within one year after sampling, the expression of CCR5 was significantly lowered. This offers a new opportunity to monitor disease activity. Besides Tregs, Teffs play an important role in active disease, markers originated from Teffs can be found in blood and urine. The detection of soluble CD25 in urine and blood was found to be an important marker for active renal disease. All in all, the work presented in this thesis contributes to the knowledge of Tregs and Teffs in ANCA vasculitis and might offer new options in the detection, follow up and treatment

    Mycophenolic acid and 6-mercaptopurine both inhibit B-cell proliferation in granulomatosis with polyangiitis patients, whereas only mycophenolic acid inhibits B-cell IL-6 production

    Get PDF
    Granulomatosis with polyangiitis (GPA) is an autoimmune disease affecting mainly small blood vessels. B-cells are important in the GPA pathogenesis as precursors of autoantibody-producing cells but likely also contribute (auto)antibody-independently. This has been underlined by the effectiveness of B-cell-depletion (with Rituximab) in inducing and maintaining disease remission. Mycophenolate-mofetil (MMF) and azathioprine (AZA) are immunosuppressive therapies frequently used in GPA-patients. Interestingly, MMF-treated GPA-patients are more prone to relapses than AZA-treated patients, while little is known about the influence of these drugs on B-cells. We investigated whether MMF or AZA treatment (or their active compounds) alters the circulating B-cell subset distribution and has differential effects on in vitro B-cell proliferation and cytokine production in GPA-patients that might underlie the different relapse rate. Circulating B-cell subset frequencies were determined in samples from AZA-treated (n = 13), MMF-treated (n = 12), untreated GPA-patients (n = 19) and matched HCs (n = 41). To determine the ex vivo effects of the active compounds of MMF and AZA, MPA and 6-MP respectively, on B-cell proliferation and cytokine production, PBMCs of untreated GPA-patients (n = 29) and matched HCs (n = 30) were cultured for 3-days in the presence of CpG-oligodeoxynucleotides (CpG) with MPA or 6-MP. After restimulation (with phorbol myristate acetate, calcium-ionophore), cytokine-positive B-cell frequencies were measured. Finally, to assess the effect of MMF or AZA treatment on in vitro B-cell proliferation and cytokine production, PBMCs of MMF-treated (n = 18), and AZA-treated patients (n = 28) and HCs (n = 41) were cultured with CpG. The memory B-cell frequency was increased in AZA- compared to MMF-treated patients, while no other subset was different. The active compounds of MMF and AZA showed in vitro that MPA decreased B-cell proliferation in GPA-patients and HCs. B-cell proliferation in MMF- and AZA-treated patients was not different. Finally, the IL-6+ B-cell frequency was decreased by MPA compared to 6-MP. No differences in IL-10+, IL-6+ or TNFα+ B-cell proportions or proliferation were found in MMF- and AZA-treated patients. Our results indicate that MMF could be superior to AZA in inhibiting B-cell cytokine production in GPA-patients. Future studies should assess the effects of these immunosuppressive drugs on other immune cells to elucidate mechanisms underlying the potential differences in relapse rates

    Involvement of MicroRNAs in the Aging-Related Decline of CD28 Expression by Human T Cells

    Get PDF
    Loss of CD28 is a characteristic feature of T cell aging, but the underlying mechanisms of this loss are elusive. As differential expression of microRNAs (miRNAs) has been described between CD28+ and CD28- T cells, we hypothesized that altered miRNA expression contributes to the age-associated downregulation of CD28. To avoid the confounding effects of age-associated changes in the proportions of T cells at various differentiation stages in vivo, an experimental model system was used to study changes over time in the expression of miRNA associated with the loss of CD28 expression in monoclonal T cell populations at a lower or higher number of population doublings (PDs). This approach allows identification of age-associated miRNA expression changes in a longitudinal model. Results were validated in ex vivo samples. The cumulative number of PDs but not the age of the donor of the T cell clone was correlated with decreased expression of CD28. Principal component analysis of 252 expressed miRNAs showed clustering based on low and high PDs, irrespective of the age of the clone donor. Increased expression of miR-9-5p and miR-34a-5p was seen in clones at higher PDs, and miR-9-5p expression inversely correlated with CD28 expression in ex vivo sorted T-cells from healthy subjects. We then examined the involvement of miR-9-5p, miR-34a-5p, and the members of the miR-23a similar to 24-2 cluster, in which all are predicted to bind to the 3'UTR of CD28, in the IL-15-induced loss of CD28 in T cells. Culture of fresh naive CD28+ T cells in the presence of IL-15 resulted in a gradual loss of CD28 expression, while the expression of miR-9-5p, miR-34a-5p, and members of the miR-23a-24-2 cluster increased. Binding of miR-9-5p, miR-34a-5p, miR-24-3p, and miR-27- 3p to the 3'UTR of CD28 was studied using luciferase reporter constructs. Functional binding to the 3'UTR was shown for miR-24-3p and miR-27a-3p. Our results indicate involvement of defined miRNAs in T cells in relation to specific characteristics of T cell aging, i.e., PD and CD28 expression

    Increased miR-142-3p Expression Might Explain Reduced Regulatory T Cell Function in Granulomatosis With Polyangiitis

    Get PDF
    Objectives: Regulatory T cells (Tregs) are frequently functionally impaired in patients with granulomatosis with polyangiitis (GPA). However, the mechanism underlying their impaired function is unknown. Here, we hypothesized that Treg dysfunction in GPA is due to altered microRNA (miRNA) expression. Methods: RNA isolated from FACS-sorted memory ((M)) Tregs (CD4(+)CD45RO(+)CD25(+)CD127(-)) of 8 healthy controls (HCs) and 8 GPA patients without treatment was subjected to miRNA microarray analysis. Five differentially expressed miRNAs were validated in a larger cohort by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). An miRNA target gene database search revealed targets that were tested with RT-qPCR in (M)Tregs from patients and HCs. cAMP levels were measured using flow cytometry. Results: Microarray analysis revealed 19 differentially expressed miRNAs, of which miR-142-3p was confirmed to be significantly upregulated in (M)Tregs from GPA patients compared to those from HCs (1.9-fold, p = 0.03). In vitro overexpression of miR-142-3p lowered the suppressive capacity of (M)Tregs (2.1-fold, p = 0.03), and miR-142-3p expression correlated negatively with the suppressive capacity (rho = -0.446, p = 0.04). Overexpression of miR-142-3p significantly decreased cAMP levels (p = 0.02) and tended to decrease the mRNA levels of a predicted target gene, adenylate cyclase 9 (ADCY9; p = 0.06). In comparison to those from HCs, (M)Tregs from GPA patients had lower ADCY9 mRNA levels (2-fold, p = 0.008) and produced significantly less cAMP after stimulation. Importantly, induction of cAMP production in miR-142-3p overexpressed (M)Tregs by forskolin restored their suppressive function in vitro. Conclusion: Overexpression of miR-142-3p in (M)Tregs from GPA patients might cause functional impairment by targeting ADCY9, which leads to the suppression of cAMP production

    Smoking during pregnancy influences the maternal immune response in mice and humans

    Get PDF
    ObjectiveDuring pregnancy the maternal immune system has to adapt its response to accommodate the fetus. The objective of this study was to analyze the effects of smoking on the maternal immune system.Study DesignFirst-trimester decidual tissue and peripheral blood of smoking and nonsmoking women were analyzed by real time reverse transcription–polymerase chain reaction (RT-PCR) and flow cytometry. A mouse model was used to further analyze the effects of smoking. Murine tissue was analyzed by flow cytometry, real-time RT-PCR, and immunohistochemistry.ResultsSmoking caused lower percentages of viable pups in mice and lower birthweights in humans. Smoking mothers, both mice and human, had more natural killer cells and inflammatory macrophages locally, whereas systemically they had lower percentages of regulatory T cells than nonsmoking controls.ConclusionMaternal smoke exposure during pregnancy influences local and systemic immune responses in both women and mice. Such changes may be involved in adverse pregnancy outcomes in smoking individuals

    Urinary and serum soluble CD25 complements urinary soluble CD163 to detect active renal anti-neutrophil cytoplasmic autoantibody-associated vasculitis:a cohort study

    Get PDF
    Background. Early detection of renal involvement in anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis (AAV) is of major clinical importance to allow prompt initiation of treatment and limit renal damage. Urinary soluble cluster of differentiation 163 (usCD163) has recently been identified as a potential biomarker for active renal vasculitis. However, a significant number of patients with active renal vasculitis test negative using usCD163. We therefore studied whether soluble CD25 (sCD25), a T cell activation marker, could improve the detection of renal flares in AAV. Methods. sCD25 and sCD163 levels in serum and urine were measured by enzyme-linked immunosorbent assay in 72 patients with active renal AAV, 20 with active extrarenal disease, 62 patients in remission and 18 healthy controls. Urinary and blood CD4(+) T and CD4(+) T effector memory (TEM) cell counts were measured in 22 patients with active renal vasculitis. Receiver operating characteristics (ROC) curves were generated and recursive partitioning was used to calculate whether usCD25 and serumsoluble CD25 (ssCD25) add utility to usCD163. Results. usCD25, ssCD25 and usCD163 levels were significantly higher during active renal disease and significantly decreased after induction of remission. A combination of usCD25, usCD163 and ssCD25 outperformed all individual markers (sensitivity 84.7%, specificity 95.1%). Patients positive for sCD25 but negative for usCD163 (n = 10) had significantly higher C-reactive protein levels and significantly lower serum creatinine and proteinuria levels compared with the usCD163positive patients. usCD25 correlated positively with urinary CD4(+) T and CD4(+) TEM cell numbers, whereas ssCD25 correlated negatively with circulating CD4(+) T and CD4+ TEMcells. Conclusion. Measurement of usCD25 and ssCD25 complements usCD163 in the detection of active renal vasculitis

    CD163 and CD206 expression define distinct macrophage subsets involved in active ANCA-associated glomerulonephritis

    No full text
    INTRODUCTION: Macrophages are key players in the immunopathology of anti-neutrophil cytoplasmic antibody (ANCA) mediated-vasculitis (AAV) with glomerulonephritis (ANCA GN). Different macrophage phenotypes are expected to play distinct roles in ANCA GN. Macrophages expressing CD163 and CD206 are found in lesions associated with ANCA GN. Hence, we aimed to investigate the clinicopathological significance of CD206 and CD163 in ANCA GN in a multicenter retrospective cohort study. MATERIAL AND METHODS: Patients with ANCA-associated vasculitis, with clinical data, serum and urine samples were included from three cohorts. Serum soluble CD206 (ssCD206) and urinary soluble CD163 (usCD163) levels were measured. Human kidney tissue samples (n = 53) were stained for CD206 and CD163 using immunohistochemistry and immunofluorescence, and findings were correlated with clinical and pathological data. RESULTS: In total, 210 patients were included (i.e., ANCA GN, n = 134; AAV without GN, n = 24; AAV in remission n = 52). Increased levels of both ssCD206 and usCD163 were seen in ANCA GN. High levels of ssCD206 declined after reaching remission, however, ssCD206 did not improve the accuracy of usCD163 to detect ANCA GN. Soluble markers correlated with histopathological findings. CD163+CD206- macrophages were found in the glomerulus and may play pivotal roles in glomerulonephritis, whereas CD206+CD163- and CD206+CD163+ macrophages were located tubulointerstitially and likely play a more prominent role in ANCA-associated tubulointerstitial inflammation. In ANCA GN patients increasing levels of ssCD206 increased the risk for end-stage renal disease and mortality. CONCLUSIONS: Our results confirm and extend the notion that CD206+ and CD163+ macrophages are prominent components of the cellular infiltrate in ANCA GN. We found distinct macrophage phenotypes that may play distinct roles in the immunopathology of ANCA GN and elaborate on a potential mechanism underlying the findings of this study. usCD163 remains an excellent marker to detect active ANCA GN, whereas ssCD206 seems a more prominent marker for risk prediction
    corecore