42 research outputs found

    Novel compound heterozygous mutations in CNGA1in a Chinese family affected with autosomal recessive retinitis pigmentosa by targeted sequencing

    Get PDF
    Gene symbol list that include in the Hereditary Ophthalmological Disease GenePanel. (XLSX 12 kb

    Detection of anatid herpesvirus 1 gC gene by TaqMan™ fluorescent quantitative real-time PCR with specific primers and probe

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anatid herpesvirus 1 (AHV-1) is known for the difficulty of monitoring and controlling, because it has a long period of asymptomatic carrier state in waterfowls. Furthermore, as a significant essential agent for viral attachment, release, stability and virulence, <it>gC </it>(<it>UL44</it>) gene and its protein product (glycoprotein C) may play a key role in the epidemiological screening. The objectives of this study were to rapidly, sensitively, quantitatively detect <it>gC </it>gene of AHV-1 and provide the underlying basis for further investigating pcDNA3.1-gC DNA vaccine in infected ducks by TaqMan™ fluorescent quantitative real-time PCR assay (FQ-PCR) with pcDNA3.1-gC plasmid.</p> <p>Results</p> <p>The repeatable and reproducible quantitative assay was established by the standard curve with a wide dynamic range (eight logarithmic units of concentration) and very good correlation values (1.000). This protocol was able to detect as little as 1.0 × 10<sup>1 </sup>DNA copies per reaction and it was highly specific to AHV-1. The TaqMan™ FQ-PCR assay successfully detected the <it>gC </it>gene in tissue samples from pcDNA3.1-gC and AHV-1 attenuated vaccine (AHV-1 Cha) strain inoculated ducks respectively.</p> <p>Conclusions</p> <p>The assay offers an attractive method for the detection of AHV-1, the investigation of distribution pattern of AHV-1 in vivo and molecular epidemiological screening. Meanwhile, this method could expedite related AHV-1 and gC DNA vaccine research.</p

    3D-printed Model and guide plate for accurate resection of advanced cutaneous squamous cell carcinomas

    Get PDF
    PurposeAdvanced cutaneous squamous cell carcinomas (cSCC) can have unclear borders, and simple expanded resection may not only destroy surrounding normal tissues unnecessarily, but can also leave residual tumor cells behind. In this article, we describe a new method for resection and evaluate its accuracy.MethodsThe magnetic resonance imaging (MRI) data of 12 patients with advanced cSCC were reconstructed to obtain three-dimensional (3D) tumor models and guide plates for surgeries. Thirty-eight patients with the same cSCC stage, who underwent expanded resection, were included. The distances between the upper, lower, left and right horizontal margins and tumor pathological boundaries were classified as “positive”, “close” (0–6 mm), “adequate” (6–12 mm) or “excessive” (&gt;12 mm). The positive margin rate and margin distance were compared between the groups.ResultsThe 3D tumor models of 12 patients were all successfully reconstructed. The positive rate of 48 surgical margins in the guide plate group was 2.1%, and the proportion of “adequate” margins was 70.8%. A total of 152 margins of 38 patients were included in the extended resection group, for which the positive rate was 13.8%; this was higher than that of the guide plate group (P = 0.045). The proportion of “adequate” margins was 27.6%, with group differences seen in the distance distribution (P &lt; 0.01).ConclusionsIn surgical resection of advanced cSCC, compared with simple expanded resection, surgical planning using a 3D tumor model and guide plate can reduce the rate of horizontal surgical margins, and the probability of under- or over-resection.Clinical Trial Registration: http://www.chictr.org.cn, Identifier [No. ChiCTR2100050174]

    First Report of Integrative Conjugative Elements in Riemerella anatipestifer Isolates From Ducks in China

    Get PDF
    We report for the first time the occurrence of integrative conjugative elements (ICEs) in Riemerella anatipestifer (R.anatipestifer) isolated from diseased ducks in China. For this purpose, a total of 48 genome sequences were investigated, which comprised 30 publicly available R. anatipestifer genome sequences, and 18 clinical isolates genomes sequences. Two ICEs, named ICERanRCAD0133-1 and ICERanRCAD0179-1 following the classic nomenclature system, were identified in R. anatipestifer through the use of bioinformatics tools. Comparative analysis revealed that three ICEs in Ornithobacterium rhinotracheale showed a high degree of conservation with the core genes of ICERanRCAD0133-1, while 13 ICEs with high similarity to ICERanRCAD0179-1 were found in Bacteroidetes. Based on the definition of ICE family, ICERanRCAD0179-1 was grouped in CTnDOT/ERL family; however, ICERanRCAD0133-1, which had no significant similarity with known ICEs, might be classified into a novel ICE family. The sequences of ICERanRCAD0133-1 and ICERanRCAD0179-1 were 70890 bp and 49166 bp in length, had 33.14 and 50.34% GC content, and contained 77 CDSs and 51 CDSs, respectively. Cargo genes carried by these two ICEs were predicted to encode: R-M systems, IS elements, a putative TonB-dependent receptor, a bacteriocin/lantibiotic efflux ABC transporter, a tetracycline resistance gene and more. In addition, phylogenetic analyses revealed that ICERanRCAD0179-1 and related ICEs were derived from a common ancestor, which may have undergone divergence prior to integartation into the host bacterial chromosome, and that the core genes co-evolved via a related evolutionary process or experienced only a low degree of recombination events during spread from a common CTnDOT/ERL family ancestor. Collectively, this study is the first identification and characterization of ICEs in R. anatipestifer; and provides new insights into the genetic diversity, evolution, adaptation, antimicrobial resistance, and virulence of R. anatipestifer

    Training optimization for hybrid MIMO communication systems

    No full text
    Channel estimation is conceived for hybrid multiple-input multiple-output (MIMO) communication systems. Both mean square error minimization and mutual information maximization are used as our performance metrics and a pair of low-complexity channel estimation schemes are proposed. In each scheme, the training sequence and the analog matrices of the transmitter and receiver are jointly optimized. We commence by designing the optimal training sequences and analog matrices for the first scheme. Upon relying on the resultant optimal structures, the training optimization problems are substantially simplified and the nonconvexity resulting from the analog matrices can be overcome. In the second scheme, the channel estimation and data transmission share the same analog matrices, which beneficially reduces the overhead of optimizing the associated analog matrices. Therefore, a composite channel matrix is estimated instead of the true channel matrix. By exploiting the statistical optimization framework advocated, the analog matrices can be designed independently of the training sequence. Based on the resultant analog matrices, the training sequence can then be efficiently designed according to diverse channel statistics and performance metrics. Finally, we conclude by quantifying the performance benefits of the proposed estimation schemes
    corecore