66 research outputs found

    Verification of the Thomson-Onsager reciprocity relation for spin caloritronics

    Get PDF
    We investigate the Thomson-Onsager relation between the spin-dependent Seebeck and spin-dependent Peltier effect. To maintain identical device and measurement conditions we measure both effects in a single Ni80_{80}Fe20_{20}/Cu/Ni80_{80}Fe20_{20} nanopillar spin valve device subjected to either an electrical or a thermal bias. In the low bias regime, we observe similar spin signals as well as background responses, as required by the Onsager reciprocity relation. However, at large biases, deviation from reciprocity occurs due to dominant nonlinear contribution of the temperature dependent transport coefficients. By systematic modeling of these nonlinear thermoelectric effects and measuring higher order thermoelectric responses for different applied biases, we identify the transition between the two regimes as the point at which Joule heating start to dominate over Peltier heating. Our results signify the importance of local equilibrium for the validity of this phenomenological reciprocity relation.Comment: 5 pages, 5 figure

    Comparison of the magneto-Peltier and magneto-Seebeck effects in magnetic tunnel junctions

    Get PDF
    Understanding heat generation and transport processes in a magnetic tunnel junction (MTJ) is a significant step towards improving its application in current memory devices. Recent work has experimentally demonstrated the magneto-Seebeck effect in MTJs, where the Seebeck coefficient of the junction varies as the magnetic configuration changes from a parallel (P) to an anti-parallel (AP) configuration. Here we report the study on its as-yet-unexplored reciprocal effect, the magneto-Peltier effect, where the heat flow carried by the tunneling electrons is altered by changing the magnetic configuration of the MTJ. The magneto-Peltier signal that reflects the change in the temperature difference across the junction between the P and AP configurations scales linearly with the applied current in the small bias but is greatly enhanced in the large bias regime, due to higher-order Joule heating mechanisms. By carefully extracting the linear response which reflects the magneto-Peltier effect, and comparing it with the magneto-Seebeck measurements performed on the same device, we observe results consistent with Onsager reciprocity. We estimate a magneto-Peltier coefficient of 13.4 mV in the linear regime using a three-dimensional thermoelectric model. Our result opens up the possibility of programmable thermoelectric devices based on the Peltier effect in MTJs

    Spin-dependent Seebeck coefficients of Ni_{80}Fe_{20} and Co in nanopillar spin valves

    Get PDF
    We have experimentally determined the spin-dependent Seebeck coefficient of permalloy (Ni_{80}Fe_{20}) and cobalt (Co) using nanopillar spin valve devices. The devices were specifically designed to completely separate heat related effects from charge related effects. A pure heat current through the nanopillar spin valve, a stack of two ferromagnetic layers (F) separated by a non-magnetic layer (N), leads to a thermovoltage proportional to the spin-dependent Seebeck coefficient S_{S}=S_{\uparrow}-S_{\downarrow} of the ferromagnet, where S_{\uparrow} and S_{\downarrow} are the Seebeck coefficient for spin-up and spin-down electrons. By using a three-dimensional finite-element model (3D-FEM) based on spin-dependent thermoelectric theory, whose input material parameters were measured in separate devices, we were able to accurately determine a spin-dependent Seebeck coefficient of -1.8 microvolt/Kelvin and -4.5 microvolt/Kelvin for cobalt and permalloy, respectively corresponding to a Seebeck coefficient polarization P_{S}=S_{S}/S_{F} of 0.08 and 0.25, where S_{F} is the Seebeck coefficient of the ferromagnet. The results are in agreement with earlier theoretical work in Co/Cu multilayers and spin-dependent Seebeck and spin-dependent Peltier measurements in Ni_{80}Fe_{20}/Cu spin valve structures

    Direct electronic measurement of Peltier cooling and heating in graphene

    Get PDF
    Thermoelectric effects allow the generation of electrical power from waste heat and the electrical control of cooling and heating. Remarkably, these effects are also highly sensitive to the asymmetry in the density of states around the Fermi energy and can therefore be exploited as probes of distortions in the electronic structure at the nanoscale. Here we consider two-dimensional graphene as an excellent nanoscale carbon material for exploring the interaction between electronic and thermal transport phenomena, by presenting a direct and quantitative measurement of the Peltier component to electronic cooling and heating in graphene. Thanks to an architecture including nanoscale thermometers, we detected Peltier component modulation of up to 15 mK for currents of 20 μ\muA at room temperature and observed a full reversal between Peltier cooling and heating for electron and hole regimes. This fundamental thermodynamic property is a complementary tool for the study of nanoscale thermoelectric transport in two-dimensional materials.Comment: Final version published in Nature Communications under a Creative Commons Attribution 4.0 International Licens

    Control of spin current by a magnetic YIG substrate in NiFe/Al nonlocal spin valves

    Get PDF
    We study the effect of a magnetic insulator [yttrium iron garnet (YIG)] substrate on the spin-transport properties of Ni80Fe20/Al nonlocal spin valve (NLSV) devices. The NLSV signal on the YIG substrate is about two to three times lower than that on a nonmagnetic SiO2 substrate, indicating that a significant fraction of the spin current is absorbed at the Al/YIG interface. By measuring the NLSV signal for varying injector-to-detector distances and using a three-dimensional spin-transport model that takes spin-current absorption at the Al/YIG interface into account, we obtain an effective spin-mixing conductance G(up arrow down arrow) similar or equal to 5-8 x 10(13) Omega(-1) m(-2). We also observe a small, but clear, modulation of the NLSV signal when rotating the YIG magnetization direction with respect to the fixed spin polarization of the spin accumulation in the Al. Spin relaxation due to thermal magnons or roughness of the YIG surface may be responsible for the observed small modulation of the NLSV signal.</p

    Effect of Retrapping on Thermoluminescence Peak Intensities of Small Amorphous Silicon Quantum Dots

    Get PDF
    The effect of retrapping on thermoluminescence intensity peak corresponding to each trap of small amorphous silicon quantum dots in three traps -one recombination center model is investigated. For first order kinetics, where there is no effect of retrapping, the thermoluminescence intensity clearly depends on the level of the trap beneath the edge of the conduction band. This energy difference between the edge of the conduction band and the level of the trap is called trap depth (activation energy). The shallowest trap gives the highest thermoluminescence intensity peak for first order kinetics. However, it was clearly observed that for second order and a case beyond second order kinetics, the thermoluminescence intensity peak corresponding to each trap does not depend on the trap depth. In this case, the retrapping probability coefficients are taken into account and most electrons which are detrapped from the shallow trap(s) will be retrapped to the deeper trap(s) resulting in fewer electrons taking part in the recombination process. This significantly reduces the thermoluminescence intensity peaks of the shallower trap(s). It was observed that the deepest trap, with very high concentration of electrons due to the retrapping phenomenon, gives the highest thermoluminescence intensity. In addition, the variation of concentration of electrons in each trap and the intensity of the thermoluminescence are presented. Though we considered the model of three traps and one recombination center, this phenomenon is true for any multiple traps

    Flux-pinning mediated superconducting diode effect in NbSe2/CrGeTe3 heterostructure

    Get PDF
    In ferromagnet/superconductor bilayer systems, dipolar fields from the ferromagnet can create asymmetric energy barriers for the formation and dynamics of vortices through flux pinning. Conversely, the flux emanating from vortices can pin the domain walls of the ferromagnet, thereby creating asymmetric critical currents. Here, we report the observation of a superconducting diode effect (SDE) in a NbSe2/CrGeTe3 van der Waals heterostructure in which the magnetic domains of CrGeTe3 control the Abrikosov vortex dynamics in NbSe2. In addition to extrinsic vortex pinning mechanisms at the edges of NbSe2, flux-pinning-induced bulk pinning of vortices can alter the critical current. This asymmetry can thus be explained by considering the combined effect of this bulk pinning mechanism along with the vortex tilting induced by the Lorentz force from the transport current in the NbSe2/CrGeTe3 heterostructure. We also provide evidence of critical current modulation by flux pinning depending on the history of the field setting procedure. Our results suggest a method of controlling the efficiency of the SDE in magnetically coupled van der Waals superconductors, where dipolar fields generated by the magnetic layer can be used to modulate the dynamics of the superconducting vortices in the superconductors

    Thermoelectric spin voltage in graphene

    Get PDF
    In recent years, new spin-dependent thermal effects have been discovered in ferromagnets, stimulating a growing interest in spin caloritronics, a field that exploits the interaction between spin and heat currents. Amongst the most intriguing phenomena is the spin Seebeck effect, in which a thermal gradient gives rise to spin currents that are detected through the inverse spin Hall effect. Non-magnetic materials such as graphene are also relevant for spin caloritronics, thanks to efficient spin transport, energy-dependent carrier mobility and unique density of states. Here, we propose and demonstrate that a carrier thermal gradient in a graphene lateral spin valve can lead to a large increase of the spin voltage near to the graphene charge neutrality point. Such an increase results from a thermoelectric spin voltage, which is analogous to the voltage in a thermocouple and that can be enhanced by the presence of hot carriers generated by an applied current. These results could prove crucial to drive graphene spintronic devices and, in particular, to sustain pure spin signals with thermal gradients and to tune the remote spin accumulation by varying the spin-injection bias
    • …
    corecore