3 research outputs found

    Respiration-based investigation of adsorbent-bioprocess compatibility

    Get PDF
    Background: The efficiency of downstream processes plays a crucial role in the transition from conventional petrochemical processes to sustainable biotechnological production routes. One promising candidate for product separation from fermentations with low energy demand and high selectivity is the adsorption of the target product on hydrophobic adsorbents. However, only limited knowledge exists about the interaction of these adsorbents and the bioprocess. The bioprocess could possibly be harmed by the release of inhibitory components from the adsorbent surface. Another possibility is co-adsorption of essential nutrients, especially in an in situ application, making these nutrients unavailable to the applied microorganism. Results: A test protocol investigating adsorbent-bioprocess compatibility was designed and applied on a variety of adsorbents. Inhibitor release and nutrient adsorption was studied in an isolated manner. Respiratory data recorded by a RAMOS device was used to assess the influence of the adsorbents on the cultivation in three different microbial systems for up to six different adsorbents per system. While no inhibitor release was detected in our investigations, adsorption of different essential nutrients was observed. Conclusion: The application of adsorption for product recovery from the bioprocess was proven to be generally possible, but nutrient adsorption has to be assessed for each application individually. To account for nutrient adsorption, adsorptive product separation should only be applied after sufficient microbial growth. Moreover, concentrations of co-adsorbed nutrients need to be increased to compensate nutrient loss. The presented protocol enables an investigation of adsorbent-bioprocess compatibility with high-throughput and limited effort

    Development of a chemically defined medium for Paenibacillus polymyxa by parallel online monitoring of the respiration activity in microtiter plates

    No full text
    Abstract Background One critical parameter in microbial cultivations is the composition of the cultivation medium. Nowadays, the application of chemically defined media increases, due to a more defined and reproducible fermentation performance than in complex media. In order, to improve cost-effectiveness of fermentation processes using chemically defined media, the media should not contain nutrients in large excess. Additionally, to obtain high product yields, the nutrient concentrations should not be limiting. Therefore, efficient medium optimization techniques are required which adapt medium compositions to the specific nutrient requirements of microorganisms. Results Since most Paenibacillus cultivation protocols so far described in literature are based on complex ingredients, in this study, a chemically defined medium for an industrially relevant Paenibacillus polymyxa strain was developed. A recently reported method, which combines a systematic experimental procedure in combination with online monitoring of the respiration activity, was applied and extended to identify growth limitations for Paenibacillus polymyxa. All cultivations were performed in microtiter plates. By systematically increasing the concentrations of different nutrient groups, nicotinic acid was identified as a growth-limiting component. Additionally, an insufficient buffer capacity was observed. After optimizing the growth in the chemically defined medium, the medium components were systematically reduced to contain only nutrients relevant for growth. Vitamins were reduced to nicotinic acid and biotin, and amino acids to methionine, histidine, proline, arginine, and glutamate. Nucleobases/-sides could be completely left out of the medium. Finally, the cultivation in the reduced medium was reproduced in a laboratory fermenter. Conclusion In this study, a reliable and time-efficient high-throughput methodology was extended to investigate limitations in chemically defined media. The interpretation of online measured respiration activities agreed well with the growth performance of samples measured in parallel via offline analyses. Furthermore, the cultivation in microtiter plates was validated in a laboratory fermenter. The results underline the benefits of online monitoring of the respiration activity already in the early stages of process development, to avoid limitations of medium components, oxygen limitation and pH inhibition during the scale-up
    corecore