3 research outputs found
Recommended from our members
Fine-Scale Structure in Cometary Dust Tails I::Analysis of Striae in Comet C/2006 P1 (McNaught) through Temporal Mapping
Striated features, or striae, form in cometary dust tails due to an as-yet unconstrained process or processes. For the first time we directly display the formation of striae, at C/2006 P1 McNaught, using data from the SOHO LASCO C3 coronagraph. The nature of this formation suggests both fragmentation and shadowing effects are important in the formation process. Using the SOHO data with STEREO-A and B data from the HI-1 and HI-2 instruments, we display the evolution of these striae for two weeks, with a temporal resolution of two hours or better. This includes a period of morphological change on 2007 January 13–14 that we attribute to Lorentz forces caused by the comet’s dust tail crossing the heliospheric current sheet. The nature of this interaction also implies a mixing of different sized dust along the striae, implying that fragmentation must be continuous or cascading. To enable this analysis, we have developed a new technique – temporal mapping – that displays cometary dust tails directly in the radiation beta (ratio of radiation pressure to gravity) and dust ejection time phase space. This allows for the combination of various data sets and the removal of transient motion and scaling effects
Nightside condensation of iron in an ultra-hot giant exoplanet
Ultra-hot giant exoplanets receive thousands of times Earth's insolation.
Their high-temperature atmospheres (>2,000 K) are ideal laboratories for
studying extreme planetary climates and chemistry. Daysides are predicted to be
cloud-free, dominated by atomic species and substantially hotter than
nightsides. Atoms are expected to recombine into molecules over the nightside,
resulting in different day-night chemistry. While metallic elements and a large
temperature contrast have been observed, no chemical gradient has been measured
across the surface of such an exoplanet. Different atmospheric chemistry
between the day-to-night ("evening") and night-to-day ("morning") terminators
could, however, be revealed as an asymmetric absorption signature during
transit. Here, we report the detection of an asymmetric atmospheric signature
in the ultra-hot exoplanet WASP-76b. We spectrally and temporally resolve this
signature thanks to the combination of high-dispersion spectroscopy with a
large photon-collecting area. The absorption signal, attributed to neutral
iron, is blueshifted by -11+/-0.7 km s-1 on the trailing limb, which can be
explained by a combination of planetary rotation and wind blowing from the hot
dayside. In contrast, no signal arises from the nightside close to the morning
terminator, showing that atomic iron is not absorbing starlight there. Iron
must thus condense during its journey across the nightside.Comment: Published in Nature (Accepted on 24 January 2020.) 33 pages, 11
figures, 3 table
FORS1 is getting Blue: New Blue Optimised Detectors and High Throughput Filters
Ground-based observations in the ultraviolet part of the electromagnetic spectrum are notoriously difficult owing to absorption of the atmosphere, of optical elements and the poorer efficiency of detectors. Now that CCD detectors with excellent UV response and cosmetic quality have become available, it was time to optimise FORS1 for imaging, low-resolution spectroscopic and polarimetric observations in the blue-UV. As a bonus, a new set of broadband filters with very high trans-mission and carefully defined filter bands were installed