7 research outputs found

    A perspective on life-cycle health technology assessment and real-world evidence for precision oncology in Canada

    Get PDF
    Health technology assessment (HTA) can be used to make healthcare systems more equitable and efficient. Advances in precision oncology are challenging conventional thinking about HTA. Precision oncology advances are rapid, involve small patient groups, and are frequently evaluated without a randomized comparison group. In light of these challenges, mechanisms to manage precision oncology uncertainties are critical. We propose a life-cycle HTA framework and outline supporting criteria to manage uncertainties based on real world data collected from learning healthcare systems. If appropriately designed, we argue that life-cycle HTA is the driver of real world evidence generation and furthers our understanding of comparative effectiveness and value. We conclude that life-cycle HTA deliberation processes must be embedded into healthcare systems for an agile response to the constantly changing landscape of precision oncology innovation. We encourage further research outlining the core requirements, infrastructure, and checklists needed to achieve the goal of learning healthcare supporting life-cycle HTA

    Paving the path for implementation of clinical genomic sequencing globally:Are we ready?

    Get PDF
    Despite the emerging evidence in recent years, successful implementation of clinical genomic sequencing (CGS) remains limited and is challenged by a range of barriers. These include a lack of standardized practices, limited economic assessments for specific indications, limited meaningful patient engagement in health policy decision-making, and the associated costs and resource demand for implementation. Although CGS is gradually becoming more available and accessible worldwide, large variations and disparities remain, and reflections on the lessons learned for successful implementation are sparse. In this commentary, members of the Global Economics and Evaluation of Clinical Genomics Sequencing Working Group (GEECS) describe the global landscape of CGS in the context of health economics and policy and propose evidence-based solutions to address existing and future barriers to CGS implementation. The topics discussed are reflected as two overarching themes: (1) system readiness for CGS and (2) evidence, assessments, and approval processes. These themes highlight the need for health economics, public health, and infrastructure and operational considerations; a robust patient- and family-centered evidence base on CGS outcomes; and a comprehensive, collaborative, interdisciplinary approach.</p

    Paving the path for implementation of clinical genomic sequencing globally:Are we ready?

    Get PDF
    Despite the emerging evidence in recent years, successful implementation of clinical genomic sequencing (CGS) remains limited and is challenged by a range of barriers. These include a lack of standardized practices, limited economic assessments for specific indications, limited meaningful patient engagement in health policy decision-making, and the associated costs and resource demand for implementation. Although CGS is gradually becoming more available and accessible worldwide, large variations and disparities remain, and reflections on the lessons learned for successful implementation are sparse. In this commentary, members of the Global Economics and Evaluation of Clinical Genomics Sequencing Working Group (GEECS) describe the global landscape of CGS in the context of health economics and policy and propose evidence-based solutions to address existing and future barriers to CGS implementation. The topics discussed are reflected as two overarching themes: (1) system readiness for CGS and (2) evidence, assessments, and approval processes. These themes highlight the need for health economics, public health, and infrastructure and operational considerations; a robust patient- and family-centered evidence base on CGS outcomes; and a comprehensive, collaborative, interdisciplinary approach.</p

    OP64 Review Of Economic Evaluations Of Next-Generation Precision Oncology

    No full text

    Impact on costs and outcomes of multi-gene panel testing for advanced solid malignancies: a cost-consequence analysis using linked administrative dataResearch in context

    No full text
    Summary: Background: To date, economic analyses of tissue-based next generation sequencing genomic profiling (NGS) for advanced solid tumors have typically required models with assumptions, with little real-world evidence on overall survival (OS), clinical trial enrollment or end-of-life quality of care. Methods: Cost consequence analysis of NGS testing (555 or 161-gene panels) for advanced solid tumors through the OCTANE clinical trial (NCT02906943). This is a longitudinal, propensity score-matched retrospective cohort study in Ontario, Canada using linked administrative data. Patients enrolled in OCTANE at Princess Margaret Cancer Centre from August 2016 until March 2019 were matched with contemporary patients without large gene panel testing from across Ontario not enrolled in OCTANE. Patients were matched according to 19 patient, disease and treatment variables. Full 2-year follow-up data was available. Sensitivity analyses considered alternative matched cohorts. Main Outcomes were mean per capita costs (2019 Canadian dollars) from a public payer's perspective, OS, clinical trial enrollment and end-of-life quality metrics. Findings: There were 782 OCTANE patients with 782 matched controls. Variables were balanced after matching (standardized difference  0.40), and greater in two (ovary, biliary, both p < 0.05). OCTANE was associated with greater clinical trial enrollment (25.4% vs. 9.5%, p < 0.001) and better end-of-life quality due to less death in hospital (10.2% vs. 16.4%, p = 0.003). Results were robust in sensitivity analysis. Interpretation: We found an increase in healthcare costs associated with multi-gene panel testing for advanced cancer treatment. The impact on OS was not significant, but varied across tumor types. OCTANE was associated with greater trial enrollment, lower publicly funded drug costs and fewer in-hospital deaths suggesting important considerations in determining the value of NGS panel testing for advanced cancers. Funding: T.P H holds a research grant provided by the Ontario Institute for Cancer Research through funding provided by the Government of Ontario (#IA-035 and P.HSR.158) and through funding of the Canadian Network for Learning Healthcare Systems and Cost-Effective ‘Omics Innovation (CLEO) via Genome Canada (G05CHS)
    corecore